login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179253
Numbers k that have 13 terms in their Zeckendorf representation.
18
196417, 271442, 300099, 311045, 315226, 316823, 317433, 317666, 317755, 317789, 317802, 317807, 317809, 317810, 392835, 421492, 432438, 436619, 438216, 438826, 439059, 439148, 439182, 439195, 439200, 439202, 439203, 467860, 478806, 482987
OFFSET
1,1
COMMENTS
A007895(a(n)) = 13. - Reinhard Zumkeller, Mar 10 2013
LINKS
EXAMPLE
196417 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 46368 + 121393;
271442 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 46368 + 196418;
MAPLE
with(combinat): seq(add(fibonacci(2*k), k = 1 .. 13-m)+add(fibonacci(27-2*k+2), k = 1 .. m), m = 0 .. 13); # this program yields only the first 14 terms of the sequence
From R. J. Mathar, Jul 23 2010: (Start)
Lzto10 := proc(L) local i ; add( op(i, L)*combinat[fibonacci](i+1), i=1..nops(L) ) ; end proc:
zbits := proc(numbits, toset, upbits) local L, hibi ; if 2*toset-1 > numbits then return ; end if; if toset = 0 then L := [(seq(0, i=1..numbits)), op(upbits)] ; Lzto10(L); print(%) ; else for hibi from toset-1 to numbits -1 do if toset = 1 then procname(hibi, toset-1, [1, seq(0, i=1..numbits-hibi-1), op(upbits)]) ; else procname(hibi-1, toset-1, [0, 1, seq(0, i=1..numbits-hibi-1), op(upbits)]) ; end if; end do; end if; return ; end proc:
ztot := 13 : for numbits from 2*ztot -1 to 50 do zbits(numbits-2, ztot-1, [0, 1]) ; end do: (End)
MATHEMATICA
Reap[For[m = 0; k = 1, k <= 10^8, k++, If[BitAnd[k, 2 k] == 0, m++; If[DigitCount[k, 2, 1] == 13, Print[m]; Sow[m]]]]][[2, 1]] (* Jean-François Alcover, Aug 20 2023 *)
PROG
(Haskell)
a179253 n = a179253_list !! (n-1)
a179253_list = filter ((== 13) . a007895) [1..]
-- Reinhard Zumkeller, Mar 10 2013
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 05 2010
EXTENSIONS
More terms from R. J. Mathar, Jul 23 2010
STATUS
approved