OFFSET
2,2
COMMENTS
The partial sums of a sequence (a, b, c, ...) are (a, a+b, a+b+c, ...).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The partition with Heinz number n is the reversed n-th row of A112798.
EXAMPLE
Triangle begins:
2: 1
3: 2
4: 1 2
5: 3
6: 2 3
7: 4
8: 1 2 3
9: 2 4
10: 3 4
11: 5
12: 2 3 4
13: 6
14: 4 5
15: 3 5
16: 1 2 3 4
For example, the integer partition with Heinz number 90 is (3,2,2,1), so row n = 90 is (3,5,7,8).
MAPLE
T:= n-> ListTools[PartialSums](sort([seq(numtheory
[pi](i[1])$i[2], i=ifactors(n)[2])], `>`))[]:
seq(T(n), n=2..50); # Alois P. Heinz, Jan 01 2023
MATHEMATICA
Table[Accumulate[Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]], {n, 2, 30}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Dec 30 2022
STATUS
approved