Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jul 09 2019 11:14:57
%S 1,1,1,3,2,2,5,3,3,11,8,8,19,11,11,25,14,14,41,27,27,59,32,32,70,38,
%T 38,110,72,72,158,86,86,190,104,104,289,185,185,395,210,210,455,245,
%U 245,645,400,400,829,429,429,915,486,486,1269,783,783,1623,840,840,1800,960,960,2472
%N Expansion of Product_{k>=0} (1 + x^(3^k) + x^(2*3^k) + x^(3^(k+1)))^(2^k).
%C The trisection equals the self-convolution of this sequence.
%F G.f.: Product_{k>=0} ((1 - x^(4*3^k))/(1 - x^(3^k)))^(2^k).
%F G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3) * A(x^3)^2.
%t nmax = 63; CoefficientList[Series[Product[(1 + x^(3^k) + x^(2 3^k) + x^(3^(k + 1)))^(2^k), {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]
%t nmax = 63; A[_] = 1; Do[A[x_] = (1 + x + x^2 + x^3) A[x^3]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%Y Cf. A054390, A237651, A309046.
%K nonn
%O 0,4
%A _Ilya Gutkovskiy_, Jul 09 2019