login
A281976
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that both x and x + 24*y are squares.
71
1, 2, 3, 2, 2, 3, 3, 2, 1, 3, 4, 2, 1, 2, 2, 2, 2, 3, 5, 2, 3, 3, 2, 1, 1, 4, 5, 4, 2, 2, 4, 3, 3, 3, 6, 2, 6, 5, 3, 3, 3, 7, 6, 2, 2, 5, 4, 1, 2, 3, 7, 6, 8, 4, 5, 5, 2, 4, 5, 2, 3, 5, 3, 4, 2, 5, 9, 4, 5, 4, 5, 1, 3, 5, 4, 5, 5, 4, 2, 3, 3
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 8, 12, 23, 24, 47, 71, 168, 344, 632, 1724).
By the linked JNT paper, any nonnegative integer can be written as the sum of a fourth power and three squares.
We have verified a(n) > 0 for all n = 0..10^7.
See also A281977, A282013 and A282014 for similar conjectures.
a(n) <= A273404(n). Starts to differ from A273404 at n=145. - R. J. Mathar, Feb 12 2017
Qing-Hu Hou at Tianjin Univ. has verified a(n) > 0 for all n = 0..10^10.
I would like to offer 2400 US dollars for the first proof of my conjecture that a(n) > 0 for any nonnegative integer n. - Zhi-Wei Sun, Feb 14 2017
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
Zhi-Wei Sun, The 24-conjecture with $2400 prize, a message to Number Theory List, Feb. 14, 2017.
EXAMPLE
a(8) = 1 since 8 = 0^2 + 0^2 + 2^2 + 2^2 with 0 = 0^2 and 0 + 24*0 = 0^2.
a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 = 1^2 and 1 + 24*1 = 5^2.
a(23) = 1 since 23 = 1^2 + 2^2 + 3^2 + 3^2 with 1 = 1^2 and 1 + 24*2 = 7^2.
a(24) = 1 since 24 = 4^2 + 0^2 + 2^2 + 2^2 with 4 = 2^2 and 4 + 24*0 = 2^2.
a(47) = 1 since 47 = 1^2 + 1^2 + 3^2 + 6^2 with 1 = 1^2 and 1 + 24*1 = 5^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 = 1^2 and 1 + 24*5 = 11^2.
a(168) = 1 since 168 = 4^2 + 4^2 + 6^2 + 10^2 with 4 = 2^2 and 4 + 24*4 = 10^2.
a(344) = 1 since 344 = 4^2 + 0^2 + 2^2 + 18^2 with 4 = 2^2 and 4 + 24*0 = 2^2.
a(632) = 1 since 632 = 0^2 + 6^2 + 14^2 + 20^2 with 0 = 0^2 and 0 + 24*6 = 12^2.
a(1724) = 1 since 1724 = 25^2 + 1^2 + 3^2 + 33^2 with 25 = 5^2 and 25 + 24*1 = 7^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^4-y^2-z^2]&&SQ[x^2+24y], r=r+1], {x, 0, n^(1/4)}, {y, 0, Sqrt[n-x^4]}, {z, 0, Sqrt[(n-x^4-y^2)/2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 04 2017
STATUS
approved