OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 8, 12, 23, 24, 47, 71, 168, 344, 632).
For more conjectural refinements of Lagrange's four-square theorem, one may consult arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(8) = 1 since 8 = 0^2 + 0^2 + 2^2 + 2^2 with 0 + 24*0 = 0^2.
a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 + 24*1 = 5^2.
a(23) = 1 since 23 = 1^2 + 2^2 + 3^2 + 3^2 with 1 + 24*2 = 7^2.
a(24) = 1 since 24 = 4^2 + 0^2 + 2^2 + 2^2 with 4 + 24*0 = 2^2.
a(47) = 1 since 47 = 1^2 + 1^2 + 3^2 + 6^2 with 1 + 24*1 = 5^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 + 24*5 = 11^2.
a(168) = 1 since 168 = 4^2 + 4^2 + 6^2 + 10^2 with 4 + 24*4 = 10^2.
a(344) = 1 since 344 = 4^2 + 0^2 + 2^2 + 18^2 with 4 + 24*0 = 2^2.
a(632) = 1 since 632 = 0^2 + 6^2 + 14^2 + 20^2 with 0 + 24*6 = 12^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x+24y], r=r+1], {x, 0, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[(n-x^2-y^2)/2]}]; Print[n, " ", r]; Label[aa]; Continue, {n, 0, 80}]
CROSSREFS
Cf. A000118, A000290, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302.
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 21 2016
STATUS
approved