login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272620
Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w + x + y - z a square, where w is an integer and x,y,z are nonnegative integers with |w| <= x >= y <= z < x + y.
24
1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 3, 3, 2, 3, 1, 7, 1, 2, 3, 2, 1, 3, 3, 7, 2, 3, 1, 7, 1, 1, 4, 5, 3, 2, 1, 9, 2, 5, 3, 6, 5, 3, 3, 7, 2, 2, 5, 6, 3, 3, 5, 9, 4, 4, 4, 9, 4, 4, 5, 6, 6, 1, 6, 12, 2, 2, 7, 4, 4, 6, 5, 11, 7, 3, 5, 9, 4, 5
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
In contrast, the author has proved that any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z integers such that x + y + z is a square. See arXiv:1604.06723.
Yu-Chen Sun and the author proved in arXiv:1605.03074 that any nonnegative integer can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z integers such that w + x + y + z is a square. - Zhi-Wei Sun, May 10 2016
LINKS
Yu-Chen Sun and Zhi-Wei Sun, Two refinements of Lagrange's four-square theorem, arXiv:1605.03074 [math.NT], 2016.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
EXAMPLE
a(1) = 1 since 1 = 0^2 + 1^2 + 0^2 + 0^2 with 0 < 1 > 0 = 0 < 1 + 0 and 0 + 1 + 0 - 0 = 1^2.
a(2) = 1 since 2 = (-1)^2 + 1^2 + 0^2 + 0^2 with 1 = 1 > 0 = 0 < 1 + 0 and -1 + 1 + 0 - 0 = 0^2.
a(3) = 1 since 3 = 0^2 + 1^2 + 1^2 + 1^2 with 0 < 1 = 1 = 1 < 1 + 1 and 0 + 1 + 1 - 1 = 1^2.
a(4) = 1 since 4 = (-1)^2 + 1^2 + 1^2 + 1^2 with 1 = 1 = 1 = 1 < 1 + 1 and -1 + 1 + 1 - 1 = 0^2.
a(6) = 1 since 6 = (-1)^2 + 2^2 + 0^2 + 1^2 with 1 < 2 > 0 < 1 < 2 + 0 and -1 + 2 + 0 - 1 = 0^2.
a(7) = 1 since 7 = (-1)^2 + 2^2 + 1^2 + 1^2 with 1 < 2 > 1 = 1 < 2 + 1 and -1 + 2 + 1 - 1 = 1^2.
a(9) = 1 since 9 = 0^2 + 2^2 + 1^2 + 2^2 with 0 < 2 > 1 < 2 < 2 + 1 and 0 + 2 + 1 - 2 = 1^2.
a(11) = 1 since 11 = (-1)^2 + 3^2 + 0^2 + 1^2 with 1 < 3 > 0 < 1 < 3 + 0 and -1 + 3 + 0 - 1 = 1^2.
a(12) = 1 since 12 = 1^2 + 3^2 + 1^2 + 1^2 with 1 < 3 > 1 = 1 < 3 + 1 and 1 + 3 + 1 - 1 = 2^2.
a(17) = 1 since 17 = 0^2 + 2^2 + 2^2 + 3^2 with 0 < 2 = 2 < 3 < 2 + 2 and 0 + 2 + 2 - 3 = 1^2.
a(19) = 1 since 19 = 0^2 + 3^2 + 1^2 + 3^2 with 0 < 3 > 1 < 3 < 3 + 1 and 0 + 3 + 1 - 3 = 1^2.
a(23) = 1 since 23 = (-1)^2 + 3^2 + 2^2 + 3^2 with 1 < 3 > 2 < 3 < 3 + 2 and -1 + 3 + 2 - 3 = 1^2.
a(29) = 1 since 29 = 0^2 + 3^2 + 2^2 + 4^2 with 0 < 3 > 2 < 4 < 3 + 2 and 0 + 3 + 2 - 4 = 1^2.
a(31) = 1 since 31 = (-2)^2 + 3^2 + 3^2 + 3^2 with 2 < 3 = 3 = 3 < 3 + 3 and -2 + 3 + 3 - 3 = 1^2.
a(37) = 1 since 37 = (-1)^2 + 4^2 + 2^2 + 4^2 with 1 < 4 > 2 < 4 < 4 + 2 and -1 + 4 + 2 - 4 = 1^2.
a(92) = 1 since 92 = 3^2 + 5^2 + 3^2 + 7^2 with 3 < 5 > 3 < 7 < 5 + 3 and 3 + 5 + 3 - 7 = 2^2.
a(284) = 1 since 284 = 3^2 + 9^2 + 5^2 + 13^2 with 3 < 9 > 5 < 13 < 9 + 5 and 3 + 9 + 5 - 13 = 2^2.
a(572) = 1 since 572 = 3^2 + 11^2 + 9^2 + 19^2 with 3 < 11 > 9 < 19 < 11 + 9 and 3 + 11 + 9 - 19 = 2^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[Sqrt[n-x^2-y^2-z^2]<=x&&SQ[n-x^2-y^2-z^2]&&SQ[x+y-z+(-1)^k*Sqrt[n-x^2-y^2-z^2]], r=r+1], {y, 0, Sqrt[n/3]}, {x, y, Sqrt[n-y^2]}, {z, y, Min[x+y-1, Sqrt[n-x^2-y^2]]}, {k, 0, Min[1, Sqrt[n-x^2-y^2-z^2]]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 03 2016
EXTENSIONS
Rick L. Shepherd, May 27 2016: I checked all the statements in each example.
STATUS
approved