login
A266685
T(n,k) is the number of loops appearing in pattern of circular arc connecting two vertices of regular polygons. (See Comments.)
1
1, 2, 1, 1, 2, 1, 4, 1, 1, 2, 3, 2, 1, 6, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18
OFFSET
0,2
COMMENTS
The patterns in A262343 and A264906 can be considered as case of skip 0 and 1 vertex of circle construction on regular polygons. k is the cyclic number of loops of the case skip n-vertices. See illustration for more details.
T(n,k) is conjectured to be even rows of A109004 (excluding the first column).
FORMULA
T(n,k) = gcd(2*n+3+k, k+1), n >= 0, k = 0..2*n+1.
EXAMPLE
Irregular triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
0 1 2
1 1 2 1 4
2 1 2 3 2 1 6
3 1 2 1 4 1 2 1 8
4 1 2 1 2 5 2 1 2 1 10
5 1 2 3 4 1 6 1 4 3 2 1 12
6 1 2 1 2 1 2 7 2 1 2 1 2 1 14
7 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16
...
MATHEMATICA
Table[GCD[2 n + 3 + k, k + 1], {n, 0, 8}, {k, 0, 2 n + 1}] // Flatten (* Michael De Vlieger, Jan 03 2016 *)
PROG
(PARI) for (n=0, 20, for (k=0, 2*n+2, t=gcd(2*n+3+k, k+1); print1(t, ", ")))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Kival Ngaokrajang, Jan 02 2016
STATUS
approved