Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 22 2017 10:34:46
%S 1,2,1,1,2,1,4,1,1,2,3,2,1,6,1,1,2,1,4,1,2,1,8,1,1,2,1,2,5,2,1,2,1,10,
%T 1,1,2,3,4,1,6,1,4,3,2,1,12,1,1,2,1,2,1,2,7,2,1,2,1,2,1,14,1,1,2,1,4,
%U 1,2,1,8,1,2,1,4,1,2,1,16,1,1,2,3,2,1,6,1,2,9,2,1,6,1,2,3,2,1,18
%N T(n,k) is the number of loops appearing in pattern of circular arc connecting two vertices of regular polygons. (See Comments.)
%C The patterns in A262343 and A264906 can be considered as case of skip 0 and 1 vertex of circle construction on regular polygons. k is the cyclic number of loops of the case skip n-vertices. See illustration for more details.
%C T(n,k) is conjectured to be even rows of A109004 (excluding the first column).
%H Kival Ngaokrajang, <a href="/A266685/a266685.pdf">Illustration of initial terms</a>
%F T(n,k) = gcd(2*n+3+k, k+1), n >= 0, k = 0..2*n+1.
%e Irregular triangle begins:
%e n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
%e 0 1 2
%e 1 1 2 1 4
%e 2 1 2 3 2 1 6
%e 3 1 2 1 4 1 2 1 8
%e 4 1 2 1 2 5 2 1 2 1 10
%e 5 1 2 3 4 1 6 1 4 3 2 1 12
%e 6 1 2 1 2 1 2 7 2 1 2 1 2 1 14
%e 7 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16
%e ...
%t Table[GCD[2 n + 3 + k, k + 1], {n, 0, 8}, {k, 0, 2 n + 1}] // Flatten (* _Michael De Vlieger_, Jan 03 2016 *)
%o (PARI) for (n=0, 20,for (k=0, 2*n+2, t=gcd(2*n+3+k, k+1); print1(t, ", ")))
%Y Cf. A109004, A262343, A264906.
%K nonn,tabf
%O 0,2
%A _Kival Ngaokrajang_, Jan 02 2016