login
A138650
Table where T(n,k) is the number of unordered trees with n edges (n+1 nodes) whose node out-degrees form the k-th partition of the integer n (in Mathematica order).
0
1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 2, 2, 4, 4, 6, 1, 1, 2, 2, 4, 1, 8, 7, 2, 11, 9, 1, 1, 2, 2, 4, 2, 8, 7, 6, 5, 21, 11, 9, 24, 12, 1
OFFSET
0,6
EXAMPLE
For the partition [2,1^2] (a(10)=T(4,4)) there are the four trees:
..o.....o.....o.....o
./.\.../.\....|.....|
o...o.o...o...o.....o
|...|.|....../.\....|
o...o.o.....o...o...o
......|.....|....../.\
......o.....o.....o...o
Table T(n,k) begins:
1;
1;
1, 1;
1, 2, 1;
1, 2, 1, 4, 1;
1, 2, 2, 4, 4, 6, 1;
1, 2, 2, 4, 1, 8, 7, 2, 11, 9, 1;
1, 2, 2, 4, 2, 8, 7, 6, 5, 21, 11, 9, 24, 12, 1;
CROSSREFS
Cf. A000041 (row lengths), A000081 (row sums), A125181.
Sequence in context: A305531 A132066 A102190 * A266685 A272620 A304080
KEYWORD
more,nonn,tabf
AUTHOR
STATUS
approved