OFFSET
1,5
COMMENTS
Row n gives the coefficients of x[k]^{n/k} with increasing divisors k of n.
The length of row n is tau(n) = A000005(n) (number of divisors of n, including 1 and n).
See also table A054523 with zeros if k does not divide n, and reversed rows. [Wolfdieter Lang, May 29 2012]
REFERENCES
N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see Example 5.7).
F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 181 and 184.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.10).
LINKS
Wolfdieter Lang, Table of n, a(n) for n = 1..7069 (suggested by T. D. Noe, Nov 16 2015)
W. Lang, More terms and comments
Carl Pomerance, Lola Thompson, Andreas Weingartner, On integers n for which X^n-1 has a divisor of every degree, arXiv:1511.03357 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Cycle Index.
FORMULA
a(n, m) = phi(k(m)), m=1..tau(n), n>=1, with k(m) the m-th divisor of n, written in increasing order.
Z(C_n, x):=sum(sum(phi(k)*x[k]^{n/k}, k|n))/n, where phi(n)= A000010(n) (Euler's totient function) and k|n means 'k divides n'. Cf. Harary-Palmer reference and MathWorld link.
EXAMPLE
Array begins:
1: [1],
2: [1, 1],
3: [1, 2],
4: [1, 1, 2],
5: [1, 4],
6: [1, 1, 2, 2],
7: [1, 6], ...
The entry for n=6 is obtained as follows:
Z(C_6,x)=(1*x[1]^6 + 1*x[2]^3 + 2*x[3]^2 + 2*x[6]^1)/6.
a(6,1)=phi(1)=1, a(6,2)=phi(2)=1, a(6,3)=phi(3)=2, a(6,4)=phi(6)=2.
MATHEMATICA
k[n_, m_] := Divisors[n][[m]]; a[n_, m_] := EulerPhi[k[n, m]]; Flatten[Table[a[n, m], {n, 1, 28}, {m, 1, DivisorSigma[0, n]}]] (* Jean-François Alcover, Jul 25 2011, after given formula *)
row[n_] := If[n == 1, {1}, n List @@ CycleIndexPolynomial[CyclicGroup[n], Array[x, n]] /. x[_] -> 1]; Array[row, 30] // Flatten (* Jean-François Alcover, Nov 04 2016 *)
PROG
(PARI) tabf(nn) = for (n=1, nn, print(apply(x->eulerphi(x), divisors(n)))); \\ Michel Marcus, Nov 13 2015
(PARI) tabf(nn) = for (n=1, nn, print(apply(x->poldegree(x), factor(x^n-1)[, 1]))) \\ Michel Marcus, Nov 13 2015
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Feb 15 2005
STATUS
approved