login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102190
Irregular triangle read by rows: coefficients of cycle index polynomial for the cyclic group C_n, Z(C_n,x), multiplied by n.
26
1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 2, 2, 1, 6, 1, 1, 2, 4, 1, 2, 6, 1, 1, 4, 4, 1, 10, 1, 1, 2, 2, 2, 4, 1, 12, 1, 1, 6, 6, 1, 2, 4, 8, 1, 1, 2, 4, 8, 1, 16, 1, 1, 2, 2, 6, 6, 1, 18, 1, 1, 2, 4, 4, 8, 1, 2, 6, 12, 1, 1, 10, 10, 1, 22, 1, 1, 2, 2, 2, 4, 4, 8, 1, 4, 20, 1, 1, 12, 12, 1, 2, 6, 18, 1, 1, 2, 6, 6
OFFSET
1,5
COMMENTS
Row n gives the coefficients of x[k]^{n/k} with increasing divisors k of n.
The length of row n is tau(n) = A000005(n) (number of divisors of n, including 1 and n).
See also table A054523 with zeros if k does not divide n, and reversed rows. [Wolfdieter Lang, May 29 2012]
REFERENCES
N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see Example 5.7).
F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 181 and 184.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.10).
LINKS
Wolfdieter Lang, Table of n, a(n) for n = 1..7069 (suggested by T. D. Noe, Nov 16 2015)
Carl Pomerance, Lola Thompson, Andreas Weingartner, On integers n for which X^n-1 has a divisor of every degree, arXiv:1511.03357 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Cycle Index.
FORMULA
a(n, m) = phi(k(m)), m=1..tau(n), n>=1, with k(m) the m-th divisor of n, written in increasing order.
Z(C_n, x):=sum(sum(phi(k)*x[k]^{n/k}, k|n))/n, where phi(n)= A000010(n) (Euler's totient function) and k|n means 'k divides n'. Cf. Harary-Palmer reference and MathWorld link.
EXAMPLE
Array begins:
1: [1],
2: [1, 1],
3: [1, 2],
4: [1, 1, 2],
5: [1, 4],
6: [1, 1, 2, 2],
7: [1, 6], ...
The entry for n=6 is obtained as follows:
Z(C_6,x)=(1*x[1]^6 + 1*x[2]^3 + 2*x[3]^2 + 2*x[6]^1)/6.
a(6,1)=phi(1)=1, a(6,2)=phi(2)=1, a(6,3)=phi(3)=2, a(6,4)=phi(6)=2.
MATHEMATICA
k[n_, m_] := Divisors[n][[m]]; a[n_, m_] := EulerPhi[k[n, m]]; Flatten[Table[a[n, m], {n, 1, 28}, {m, 1, DivisorSigma[0, n]}]] (* Jean-François Alcover, Jul 25 2011, after given formula *)
row[n_] := If[n == 1, {1}, n List @@ CycleIndexPolynomial[CyclicGroup[n], Array[x, n]] /. x[_] -> 1]; Array[row, 30] // Flatten (* Jean-François Alcover, Nov 04 2016 *)
PROG
(PARI) tabf(nn) = for (n=1, nn, print(apply(x->eulerphi(x), divisors(n)))); \\ Michel Marcus, Nov 13 2015
(PARI) tabf(nn) = for (n=1, nn, print(apply(x->poldegree(x), factor(x^n-1)[, 1]))) \\ Michel Marcus, Nov 13 2015
CROSSREFS
Cf. A054523.
Sequence in context: A342416 A305531 A132066 * A138650 A266685 A272620
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Feb 15 2005
STATUS
approved