login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262343
Numerator of 3*(1-2/n), for n >= 3.
3
1, 3, 9, 2, 15, 9, 7, 12, 27, 5, 33, 18, 13, 21, 45, 8, 51, 27, 19, 30, 63, 11, 69, 36, 25, 39, 81, 14, 87, 45, 31, 48, 99, 17, 105, 54, 37, 57, 117, 20, 123, 63, 43, 66, 135, 23, 141, 72, 49, 75, 153, 26, 159, 81, 55, 84, 171, 29, 177, 90, 61, 93, 189, 32
OFFSET
3,2
COMMENTS
Given a regular n-gon with side length s, draw a circular arc of radius s around each of the n-gon's vertices so as to connect that vertex's two nearest neighbors, drawing the arc on the shorter side of the circle; i.e., each arc will extend through an angle of Pi*(n-2)/n radians (see illustration). Connect the n arcs thus drawn into a single closed curve if n is odd, or into a pair of identical (but with one rotated by 2*Pi/n radians with respect to the other) overlapping closed curves if n is even. The arcs and the curve (or pair of curves) have the following properties:
(i) Since the length L(n) of each single arc is L(n) = s*Pi*(n-2)/n, the ratio of the length of a single arc for an n-gon to the length of a single arc for the n=3 case is L(n)/L(3) = (s*Pi*(n-2)/n)/(s*Pi*(3-2)/3) = 3(1-2/n). The numerator and denominator of 3(1-2/n) are a(n) and A060789(n) respectively.
(ii) Since the loop length (considering only one of the two loops when there are two overlapping loops) is L(n)*n when n is odd, or L(n)*n/2 when n is even, the ratio of the loop length for an n-gon to the loop length for the n=3 case is (L(n)*n)/(L(3)*3) = (s*Pi*(n-2))/(s*Pi) = n-2 when n is odd, or (L(n)*n/2)/(L(3)*3) = (s*Pi*(n-2)/2)/(s*Pi) = (n-2)/2 when n is even; thus, whether odd or even, that ratio is numerator(1-2/n) = A026741(n-2).
The moment generating function of p(x, m=1, n=2, mu=2) = 3*x*E(x, 1, 2), see A163931 and A274181, is given by M(a) = (3*a-6)/(a^2*(a-1)) + 6*log(1-a)/a^3. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 04 2016
FORMULA
a(n) = numerator(3*(1-2/n)), for n >= 3.
From Peter Kagey, Sep 18 2015: (Start)
For integers k:
a(6k+0) = 3 * k - 1
a(6k+1) = 18 * k - 3
a(6k+2) = 9 * k + 1
a(6k+3) = 6 * k + 1
a(6k+4) = 9 * k + 3
a(6k+5) = 18 * k + 9
(End)
From Colin Barker, Sep 20 2015: (Start)
a(n) = 2*a(n-6) - a(n-12).
G.f.: x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2).
(End)
MAPLE
a:= proc(n): numer(3*(n-2)/n) end: seq(a(n), n=3..66); # Johannes W. Meijer, Jul 03 2016
MATHEMATICA
Table[Numerator[3 (1 - 2/n)], {n, 3, 60}] (* Michael De Vlieger, Sep 18 2015 *)
PROG
(PARI) {for(n=3, 100, a=numerator(3*(1-2/n)); print1 (a, ", "))}
(Magma) [Numerator(3*(1-2/n)): n in [3..80]]; // Vincenzo Librandi, Sep 19 2015
(PARI) Vec(x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 20 2015
CROSSREFS
Sequence in context: A125301 A347214 A263559 * A140985 A286676 A246379
KEYWORD
nonn,easy,frac
AUTHOR
Kival Ngaokrajang, Sep 18 2015
EXTENSIONS
More terms from Vincenzo Librandi, Sep 19 2015
STATUS
approved