OFFSET
5,1
COMMENTS
Inspired by A262343. Given a regular n-gon whose sides are of unit length, draw around each vertex V a circular arc connecting vertex V's two next-to-nearest neighbors. Connect the n arcs thus drawn into a single closed curve if n is odd, or a pair of identical (but rotated by 1/n of a turn) closed curves if n mod 4 = 2, or four identical (but rotated by 1/n of a turn) closed curves if n mod 4 = 0. (See illustration in Links.)
LINKS
Kival Ngaokrajang, Illustration of loop length L(n) for n = 5..12
FORMULA
a(n) = n^2/gcd((n-4)/gcd(n-4,4),n); for n >= 5.
EXAMPLE
L(5) = 2*Pi - 1/25*Pi^3 + 1/7500*Pi^5 - 1/5625000*Pi^7 + 1/7875000000*Pi^9 - ...
L(6) = 2*Pi - 1/36*Pi^3 + 1/15552*Pi^5 - 1/16796160*Pi^7 + 1/33861058560*Pi^9 - ...
L(7) = 6*Pi - 3/49*Pi^3 + 1/9604*Pi^5 - 1/14117880*Pi^7 + 1/38739462720*Pi^9 - ...
L(8) = 2*Pi - 1/64*Pi^3 + 1/49152*Pi^5 - 1/94371840*Pi^7 + 1/338228674560*Pi^9 - ...
L(9) = 10*Pi - 5/81*Pi^3 + 5/78732*Pi^5 - 1/38263752*Pi^7 + 1/173564379072*Pi^9 - ...
L(10) = 6*Pi - 3/100*Pi^3 + 1/40000*Pi^5 - 1/120000000*Pi^7 + 1/672000000000*Pi^9 - ...
...
Let T(n) be the total of the loop lengths, i.e., T(n) = L(n) if n is odd, 2*L(n) if n mod 4 = 2, and 4*L(n) if n mod 4 = 0. Multiplying each of the above series expansions for L(n) by the appropriate multiplier (i.e., 1, 2, or 4) to get T(n) gives expansions for L(5)..L(10) that agree with the general form
T(n) = 2*(n-4) * Sum_{k>=0} (-1)^k * Pi^(2k+1) / ((2k)! * n^(2k)) for n=5..10.
MATHEMATICA
Table[n^2/GCD[(n - 4)/GCD[n - 4, 4], n], {n, 5, 46}] (* Michael De Vlieger, Nov 28 2015 *)
PROG
(PARI) {for(n = 5, 100, k = 1; if (Mod(n, 4)==0, k = 4); if (Mod(n, 4)==2, k = 2); arc = 2*cos(x/n)*x*(1-4/n); loop = n*arc/k; print(loop))} \\ L(n)
(PARI) {for(n = 5, 100, a = n^2/gcd((n-4)/gcd(n-4, 4), n); print1(a, ", "))} \\ a(n)
(Magma) [n^2 div Gcd((n-4) div Gcd(n-4, 4), n): n in [5..60]]; // Vincenzo Librandi, Nov 29 2015
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Kival Ngaokrajang, Nov 28 2015
EXTENSIONS
More terms from Vincenzo Librandi, Nov 29 2015
STATUS
approved