

A264906


a(n) is the denominator of the 2nd term of the power series which is the loop length in a regular ngon. (See comment.)


2



25, 36, 49, 64, 81, 100, 121, 72, 169, 196, 225, 256, 289, 324, 361, 100, 441, 484, 529, 576, 625, 676, 729, 392, 841, 900, 961, 1024, 1089, 1156, 1225, 324, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 968, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 676, 2809
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

5,1


COMMENTS

Inspired by A262343. Given a regular ngon whose sides are of unit length, draw around each vertex V a circular arc connecting vertex V's two nexttonearest neighbors. Connect the n arcs thus drawn into a single closed curve if n is odd, or a pair of identical (but rotated by 1/n of a turn) closed curves if n mod 4 = 2, or four identical (but rotated by 1/n of a turn) closed curves if n mod 4 = 0. (See illustration in Links.)
The values of the loop length L(n) appear to form a power series. Conjectures: the coefficient of the first term is 2*A060819; the numerator and denominator of the coefficient of the 2nd term are 1*A000265 and a(n), respectively; and the numerator of the coefficient of the 3rd term is A109375.


LINKS

Table of n, a(n) for n=5..53.
Kival Ngaokrajang, Illustration of loop length L(n) for n = 5..12


FORMULA

a(n) = n^2/gcd((n4)/gcd(n4,4),n); for n >= 5.


EXAMPLE

L(5) = 2*Pi  1/25*Pi^3 + 1/7500*Pi^5  1/5625000*Pi^7 + 1/7875000000*Pi^9  ...
L(6) = 2*Pi  1/36*Pi^3 + 1/15552*Pi^5  1/16796160*Pi^7 + 1/33861058560*Pi^9  ...
L(7) = 6*Pi  3/49*Pi^3 + 1/9604*Pi^5  1/14117880*Pi^7 + 1/38739462720*Pi^9  ...
L(8) = 2*Pi  1/64*Pi^3 + 1/49152*Pi^5  1/94371840*Pi^7 + 1/338228674560*Pi^9  ...
L(9) = 10*Pi  5/81*Pi^3 + 5/78732*Pi^5  1/38263752*Pi^7 + 1/173564379072*Pi^9  ...
L(10) = 6*Pi  3/100*Pi^3 + 1/40000*Pi^5  1/120000000*Pi^7 + 1/672000000000*Pi^9  ...
...
Let T(n) be the total of the loop lengths, i.e., T(n) = L(n) if n is odd, 2*L(n) if n mod 4 = 2, and 4*L(n) if n mod 4 = 0. Multiplying each of the above series expansions for L(n) by the appropriate multiplier (i.e., 1, 2, or 4) to get T(n) gives expansions for L(5)..L(10) that agree with the general form
T(n) = 2*(n4) * Sum_{k>=0} (1)^k * Pi^(2k+1) / ((2k)! * n^(2k)) for n=5..10.


MATHEMATICA

Table[n^2/GCD[(n  4)/GCD[n  4, 4], n], {n, 5, 46}] (* Michael De Vlieger, Nov 28 2015 *)


PROG

(PARI) {for(n = 5, 100, k = 1; if (Mod(n, 4)==0, k = 4); if (Mod(n, 4)==2, k = 2); arc = 2*cos(x/n)*x*(14/n); loop = n*arc/k; print(loop))} \\ L(n)
(PARI) {for(n = 5, 100, a = n^2/gcd((n4)/gcd(n4, 4), n); print1(a, ", "))} \\ a(n)
(MAGMA) [n^2 div Gcd((n4) div Gcd(n4, 4), n): n in [5..60]]; // Vincenzo Librandi, Nov 29 2015


CROSSREFS

Cf. A000265, A060819, A109375, A262343.
Sequence in context: A077689 A018796 A029945 * A263095 A077502 A297415
Adjacent sequences: A264903 A264904 A264905 * A264907 A264908 A264909


KEYWORD

nonn,frac


AUTHOR

Kival Ngaokrajang, Nov 28 2015


EXTENSIONS

More terms from Vincenzo Librandi, Nov 29 2015


STATUS

approved



