login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130194
Let M = lower triangular matrix with 1's on and below the main diagonal, with columns multiplied by +1, +1, -1, -1, repeated; form M^2; read across rows of resulting triangle.
1
1, 2, 1, -1, 2, 1, -4, -1, 2, 1, 1, -4, -1, 2, 1, 6, 1, -4, -1, 2, 1, -1, 6, 1, -4, -1, 2, 1, -8, -1, 6, 1, -4, -1, 2, 1, 1, -8, -1, 6, 1, -4, -1, 2, 1, 10, 1, -8, -1, 6, 1, -4, -1, 2, 1, -1, 10, 1, -8, -1, 6, 1, -4, -1, 2, 1, -12, -1, 10, 1, -8, -1, 6, 1, -4, -1, 2, 1
OFFSET
1,2
COMMENTS
A000012(signed)^2.
Left border = A009531: (1, 2, -1, -4, 1, 6, -1, ...).
Row sums = A130195: (1, 3, 2, -2, -1, 5, 4, ...).
Row sums of the unsigned triangle = A058074: (1, 3, 4, 8, 9, 15, ...).
A009531 in every column: (1, 2, -1, -4, 1, 6, -1, ...).
EXAMPLE
First few rows of the triangle:
1;
2, 1;
-1, 2, 1;
-4, -1, 2, 1;
1, -4, -1, 2, 1;
6, 1, -4, -1, 2, 1;
...
PROG
(PARI) trg(nn) = {vgf = x*(1+x)^2/(1+x^2)^2 + O(x^(nn+1)); m = matrix(nn, nn, i, j, if (i >= j, polcoeff(vgf, i-j+1))); for (n=1, nn, for (k=1, n, print1(m[n, k], ", "); ); print(); ); } \\ Michel Marcus, Oct 03 2014
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, May 16 2007
EXTENSIONS
More terms from Michel Marcus, Oct 03 2014
STATUS
approved