OFFSET
0,5
COMMENTS
Without row n=0 and column m=0 this is triangle A039810.
This is an associated Sheffer matrix with e.g.f. of the m-th column ((exp(f(x))-1)^m)/m! with f(x)=:exp(x)-1.
The triangle is also called the exponential Riordan array [1, exp(exp(x)-1)]. - Peter Luschny, Apr 19 2015
Also the Bell transform of shifted Bell numbers A000110(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
LINKS
G. C. Greubel, Rows n=0..100 of triangle, flattened
Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
Wolfdieter Lang, First 10 rows and more
John Riordan, Letter, Apr 28 1976. (See third page)
FORMULA
a(n,m) = Sum_{k=m..n} S2(n,k) * S2(k,m), n>=m>=0.
E.g.f. row polynomials with argument x: exp(x*f(f(z))).
E.g.f. column m: ((exp(exp(x)-1)-1)^m)/m!.
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 2, 1]
[0, 5, 6, 1]
[0,15,32,12,1]
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> combinat:-bell(n+1), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[BellB[# + 1]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
a[n_, m_]:= Sum[StirlingS2[n, k]*StirlingS2[k, m], {k, m, n}]; Table[a[n, m], {n, 0, 100}, {m, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2018 *)
PROG
(Sage) # uses[riordan_array from A256893]
riordan_array(1, exp(exp(x) - 1), 8, exp=true) # Peter Luschny, Apr 19 2015
(PARI) for(n=0, 10, for(m=0, n, print1(sum(k=m, n, stirling(n, k, 2)* stirling(k, m, 2)), ", "))) \\ G. C. Greubel, Jul 10 2018
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Jun 01 2007
STATUS
approved