The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321712 Number of partitions of a 2n-set into colored blocks, such that exactly n colors are used and the colors are introduced in increasing order. 5
 1, 2, 32, 945, 40992, 2350950, 167829629, 14342726398, 1427875921472, 162295947266310, 20738354463124740, 2942918038945276392, 459208250931426639151, 78145305037982571857910, 14403186440935002502579620, 2858375634375573872689073400, 607685050482829924986457079520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..311 Wikipedia, Partition of a set FORMULA a(n) = Sum_{i=n..2*n} Stirling2(2*n,i)*Stirling2(i,n). a(n) = A039810(2n,n) = A130191(2n,n). a(n) = ((2*n)!/n!) * [x^(2*n)] (exp(exp(x) - 1) - 1)^n. - Ilya Gutkovskiy, Feb 15 2021 From Vaclav Kotesovec, Feb 17 2021: (Start) a(n) ~ c * d^n * (n-1)!, where d = -4/(p^2*q*(1 + q + r)) = 14.158467948361614323478778011058425244554144983745335637776404207122781371002... p = LambertW(-2/((1+r)*exp(2/(1+r)))) q = LambertW(-(1+r)/exp(1+r)) r = 0.49039351286814033601311908705923238442641817550970055325385921966197159992... is the root of the equation p*(1+r)*(1+q+r) + (2 + p + p*r) = 0 and c = 0.1809999195056310772963776575864895285358912769365095026676184958683437... (End) MAPLE b:= proc(n, m, k) option remember; `if`(n=0, 1, add( b(n-1, max(j, m), k)*`if`(j>m, k, 1) , j=1..m+1)) end: a:= n-> add(b(2*n, 0, n-i)*(-1)^i*binomial(n, i), i=0..n)/n!: seq(a(n), n=0..15); MATHEMATICA b[n_, m_, k_] := b[n, m, k] = If[n == 0, 1, Sum[b[n - 1, Max[j, m], k] If[j > m, k, 1] , {j, 1, m + 1}]]; a[n_] := Sum[b[2n, 0, n - i] (-1)^i Binomial[n, i], {i, 0, n}]/n!; a /@ Range[0, 15] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *) Table[Sum[StirlingS2[2*n, k] * StirlingS2[k, n], {k, n, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 17 2021 *) CROSSREFS Cf. A000110, A008277, A039810, A130191. Sequence in context: A069182 A333772 A012233 * A211488 A012119 A282835 Adjacent sequences: A321709 A321710 A321711 * A321713 A321714 A321715 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 15:35 EDT 2023. Contains 361432 sequences. (Running on oeis4.)