login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321712 Number of partitions of a 2n-set into colored blocks, such that exactly n colors are used and the colors are introduced in increasing order. 5
1, 2, 32, 945, 40992, 2350950, 167829629, 14342726398, 1427875921472, 162295947266310, 20738354463124740, 2942918038945276392, 459208250931426639151, 78145305037982571857910, 14403186440935002502579620, 2858375634375573872689073400, 607685050482829924986457079520 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..311

Wikipedia, Partition of a set

FORMULA

a(n) = Sum_{i=n..2*n} Stirling2(2*n,i)*Stirling2(i,n).

a(n) = A039810(2n,n) = A130191(2n,n).

a(n) = ((2*n)!/n!) * [x^(2*n)] (exp(exp(x) - 1) - 1)^n. - Ilya Gutkovskiy, Feb 15 2021

From Vaclav Kotesovec, Feb 17 2021: (Start)

a(n) ~ c * d^n * (n-1)!, where

d = -4/(p^2*q*(1 + q + r)) = 14.158467948361614323478778011058425244554144983745335637776404207122781371002...

p = LambertW(-2/((1+r)*exp(2/(1+r))))

q = LambertW(-(1+r)/exp(1+r))

r = 0.49039351286814033601311908705923238442641817550970055325385921966197159992...

is the root of the equation p*(1+r)*(1+q+r) + (2 + p + p*r) = 0

and c = 0.1809999195056310772963776575864895285358912769365095026676184958683437... (End)

MAPLE

b:= proc(n, m, k) option remember; `if`(n=0, 1, add(

b(n-1, max(j, m), k)*`if`(j>m, k, 1) , j=1..m+1))

end:

a:= n-> add(b(2*n, 0, n-i)*(-1)^i*binomial(n, i), i=0..n)/n!:

seq(a(n), n=0..15);

MATHEMATICA

b[n_, m_, k_] := b[n, m, k] = If[n == 0, 1, Sum[b[n - 1, Max[j, m], k] If[j > m, k, 1] , {j, 1, m + 1}]];

a[n_] := Sum[b[2n, 0, n - i] (-1)^i Binomial[n, i], {i, 0, n}]/n!;

a /@ Range[0, 15] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Table[Sum[StirlingS2[2*n, k] * StirlingS2[k, n], {k, n, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 17 2021 *)

CROSSREFS

Cf. A000110, A008277, A039810, A130191.

Sequence in context: A069182 A333772 A012233 * A211488 A012119 A282835

Adjacent sequences: A321709 A321710 A321711 * A321713 A321714 A321715

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Aug 27 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 15:35 EDT 2023. Contains 361432 sequences. (Running on oeis4.)