login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321714
Numbers k such that lambda(k) = 12.
1
13, 26, 35, 39, 45, 52, 65, 70, 78, 90, 91, 104, 105, 112, 117, 130, 140, 144, 156, 180, 182, 195, 208, 210, 234, 260, 273, 280, 312, 315, 336, 360, 364, 390, 420, 455, 468, 520, 546, 560, 585, 624, 630, 720, 728, 780, 819, 840, 910, 936, 1008, 1040, 1092, 1170, 1260, 1365, 1456, 1560, 1638, 1680, 1820, 1872, 2184, 2340, 2520, 2730, 3120, 3276, 3640, 4095, 4368, 4680, 5040, 5460, 6552, 7280, 8190, 9360, 10920, 13104, 16380, 21840, 32760, 65520
OFFSET
1,1
COMMENTS
Here lambda is Carmichael's lambda function (see A002322).
LINKS
R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1910), 232-238.
MATHEMATICA
Select[Range[65520], CarmichaelLambda[#] == 12 &] (* Paolo Xausa, Feb 28 2024 *)
PROG
(PARI)
lambda(n) = { \\ A002322
my(f=factor(n), fsz=matsize(f)[1]);
lcm(vector(fsz, k, my(p=f[k, 1], e=f[k, 2]);
if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
};
invlambda(n) = { \\ A270562
if (n <= 0, return(0), n==1, return(2), n%2, return(0));
my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
for (k=1, fsz, my(p=f[k, 1], e=1);
while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
g *= h; if (lambda(g) != n, 0, g);
};
lambda_level(n) = {
my(N = invlambda(n)); if (!N, return([])); my(s=List());
fordiv(N, d, if (lambda(d) == n, listput(s, d)));
Set(s);
};
lambda_level(12)
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Gheorghe Coserea, Feb 21 2019
STATUS
approved