login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that lambda(k) = 12.
1

%I #25 Feb 28 2024 15:57:34

%S 13,26,35,39,45,52,65,70,78,90,91,104,105,112,117,130,140,144,156,180,

%T 182,195,208,210,234,260,273,280,312,315,336,360,364,390,420,455,468,

%U 520,546,560,585,624,630,720,728,780,819,840,910,936,1008,1040,1092,1170,1260,1365,1456,1560,1638,1680,1820,1872,2184,2340,2520,2730,3120,3276,3640,4095,4368,4680,5040,5460,6552,7280,8190,9360,10920,13104,16380,21840,32760,65520

%N Numbers k such that lambda(k) = 12.

%C Here lambda is Carmichael's lambda function (see A002322).

%H R. D. Carmichael, <a href="https://doi.org/10.1090/S0002-9904-1910-01892-9">Note on a new number theory function</a>, Bull. Amer. Math. Soc. 16 (1910), 232-238.

%t Select[Range[65520], CarmichaelLambda[#] == 12 &] (* _Paolo Xausa_, Feb 28 2024 *)

%o (PARI)

%o lambda(n) = { \\ A002322

%o my(f=factor(n), fsz=matsize(f)[1]);

%o lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);

%o if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));

%o };

%o invlambda(n) = { \\ A270562

%o if (n <= 0, return(0), n==1, return(2), n%2, return(0));

%o my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);

%o for (k=1, fsz, my(p=f[k,1], e=1);

%o while (n % lambda(p^e) == 0, e++); g *= p^(e-1));

%o fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));

%o g *= h; if (lambda(g) != n, 0, g);

%o };

%o lambda_level(n) = {

%o my(N = invlambda(n)); if (!N, return([])); my(s=List());

%o fordiv(N, d, if (lambda(d) == n, listput(s, d)));

%o Set(s);

%o };

%o lambda_level(12)

%Y Cf. A002322, A270562, A321713.

%K nonn,fini,full

%O 1,1

%A _Gheorghe Coserea_, Feb 21 2019