login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130196
Period 3: repeat [1, 2, 2].
24
1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2
OFFSET
0,2
COMMENTS
From Reinhard Zumkeller, Nov 12 2009: (Start)
Denominator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/2; numerator = A167808;
a(n) = A131534(n) + A022003(n) = A080425(n) - A131534(n) + 2 = A153727(n)/A131534(n). (End)
Continued fraction expansion of (5+sqrt(85))/10. - Klaus Brockhaus, May 07 2010
FORMULA
a(n+3) = a(n) with a(0)=1, a(1)=a(2)=2.
G.f.: (1+2*x+2*x^2)/(1-x)*(x^2+x+1). - R. J. Mathar, Nov 14 2007
a(n) = (5 - 2*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
a(n) = 2 - 0^(n mod 3). - Reinhard Zumkeller, Nov 12 2009
a(n) = A011655(n) + 1 = (n^2 mod 3) + 1. - Boris Putievskiy, Feb 03 2013
a(n) = floor((n+1)*5/3) - floor(n*5/3). - Hailey R. Olafson, Jul 23 2014
E.g.f.: (5*exp(x) - 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Jun 03 2021
MAPLE
A130196:=n->floor(5*(n+1)/3)-floor(5*n/3): seq(A130196(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2014
MATHEMATICA
Table[Floor[5 (n + 1)/3] - Floor[5 n/3], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 24 2014 *)
Denominator[LinearRecurrence[{1, 1}, {0, 1/2}, 110]] (* or *) PadRight[{}, 110, {1, 2, 2}] (* Harvey P. Dale, Aug 08 2014 *)
LinearRecurrence[{0, 0, 1}, {1, 2, 2}, 105] (* Ray Chandler, Aug 03 2015 *)
PROG
(PARI) a(n)=2-0^(n%3) \\ Charles R Greathouse IV, Jun 01 2011
(Magma) [Floor(5*(n+1)/3)-Floor(5*n/3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 24 2014
CROSSREFS
Cf. A177347 (decimal expansion of (5+sqrt(85))/10).
Sequence in context: A098398 A306211 A131714 * A230866 A158209 A234538
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Aug 05 2007
EXTENSIONS
More terms from Klaus Brockhaus, May 07 2010
STATUS
approved