OFFSET
1,3
COMMENTS
If m and x are integers with m == x or -x (mod 4) and m == x or -x (mod 3), then y = (m^2-x^2)/24 is an integer with x^2 + 24*y = m^2. So, the sequence has infinitely many terms.
The conjecture in A281976 implies that any nonnegative integer can be written as the sum of two squares and a term of the current sequence.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
EXAMPLE
a(1) = 0 since 0 = 0^4 + 0^2 with 0^2 + 24*0 = 0^2.
a(2) = 1 since 1 = 1^4 + 0^2 with 1^2 + 24*0 = 1^2.
a(3) = 2 since 2 = 1^4 + 1^2 with 1^2 + 24*1 = 5^2.
a(4) = 5 since 5 = 1^4 + 2^2 with 1^2 + 24*2 = 7^2.
a(5) = 16 since 16 = 2^4 + 0^2 with 2^2 + 24*0 = 2^2.
a(6) = 26 since 26 = 1^4 + 5^2 with 1^2 + 24*5 = 11^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
n=0; Do[Do[If[SQ[m-x^4]&&SQ[x^2+24*Sqrt[m-x^4]], n=n+1; Print[n, " ", m]; Goto[aa]], {x, 0, m^(1/4)}]; Label[aa]; Continue, {m, 0, 4000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 04 2017
STATUS
approved