login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213359
Sum of all parts that are not the smallest part (counted with multiplicity) of all partitions of n.
2
0, 0, 2, 5, 16, 27, 59, 96, 164, 260, 415, 606, 923, 1336, 1911, 2698, 3787, 5203, 7142, 9646, 12962, 17295, 22902, 30063, 39315, 51104, 66013, 84898, 108658, 138397, 175593, 221872, 279207, 350248, 437607, 545093, 676764, 837873, 1033961, 1272730, 1562137
OFFSET
1,3
LINKS
FORMULA
a(n) = A066186(n) - A092309(n).
G.f.: Sum_{i>0}(x^i/(1-x^i))(Sum_{j>i}(j*x^j/(1-x^j))/Product_{j>i}(1-x^j)) (obtained by logarithmic differentiation of the bivariate g.f. given in A268189). - Emeric Deutsch, Feb 02 2016
EXAMPLE
a(4) = 5 because the partitions of 4 are [1,1,1,1], [1,1,2], [1,3], [2,2], and [4], having sum of parts that are not the smallest 0, 2, 3, 0, and 0, respectively, and 0 + 2 + 3 + 0 + 0 = 5. - Emeric Deutsch, Feb 02 2016
MAPLE
g := add(x^i*add(j*x^j/(1-x^j), j = i+1 .. 80)/((1-x^i)*mul(1-x^j, j = i+1 .. 80)), i = 1 .. 80): gser := series(g, x = 0, 55): seq(coeff(gser, x, n), n = 1 .. 40); # Emeric Deutsch, Feb 02 2016
MATHEMATICA
max = 42; gser = Sum[x^i*Sum[j*x^j/(1-x^j), {j, i+1, max}]/((1-x^i)* Product[1-x^j, {j, i+1, max}]), {i, 1, max}]+O[x]^max; CoefficientList[ gser, x] // Rest (* Jean-François Alcover, Feb 21 2017, after Emeric Deutsch *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 08 2013
STATUS
approved