login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092309 Sum of smallest parts (counted with multiplicity) of all partitions of n. 13
1, 4, 7, 15, 19, 39, 46, 80, 106, 160, 201, 318, 390, 554, 729, 998, 1262, 1727, 2168, 2894, 3670, 4749, 5963, 7737, 9635, 12232, 15257, 19206, 23727, 29723, 36509, 45296, 55512, 68292, 83298, 102079, 123805, 150697, 182254, 220790, 265766 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..9000

FORMULA

G.f.: Sum(n*x^n/(1-x^n)*Product(1/(1-x^k), k = n .. infinity), n = 1 .. infinity).

a(n) ~ sqrt(2) * exp(Pi*sqrt(2*n/3)) / (4*Pi*sqrt(n)). - Vaclav Kotesovec, Jul 06 2019

EXAMPLE

Partitions of 4 are: [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4)=4*1+2*1+2*2+1*1+1*4=15.

MAPLE

b:= proc(n, i) option remember; `if`(irem(n, i)=0, n, 0)

       +`if`(i>1, add(b(n-i*j, i-1), j=0..(n-1)/i), 0)

    end:

a:= n-> b(n$2):

seq(a(n), n=1..50);  # Alois P. Heinz, Feb 04 2016

MATHEMATICA

ss[n_]:=Module[{m=Min[n]}, Select[n, #==m&]]; Table[Total[Flatten[ss/@ IntegerPartitions[n]]], {n, 50}] (* Harvey P. Dale, Dec 16 2013 *)

b[n_, i_] := b[n, i] = If[Mod[n, i] == 0, n, 0] + If[i > 1, Sum[b[n - i*j, i - 1], {j, 0, (n - 1)/i}], 0]; a[n_] := b[n, n]; Table[a[n], {n, 1, 50}] (* Jean-Fran├žois Alcover, Aug 29 2016, after Alois P. Heinz *)

CROSSREFS

Cf. A092314, A092322, A092269, A092321, A092313, A092310, A092311, A092268.

Cf. A046746.

Sequence in context: A310926 A310927 A049832 * A263617 A271675 A039669

Adjacent sequences:  A092306 A092307 A092308 * A092310 A092311 A092312

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Feb 16 2004

EXTENSIONS

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 22:28 EDT 2021. Contains 343090 sequences. (Running on oeis4.)