OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..2500
FORMULA
G.f.: Sum((x^(2*n-1)/(1-x^(2*n-1)))/Product((1-x^(2*k-1)), k=1..n), n=1..infinity).
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 07 2019
EXAMPLE
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6+1+2+1=10.
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[(x^(2*n - 1)/(1 - x^(2*n - 1))) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
lpp[k_]:=Module[{c=Max[k]}, Count[k, c]]; Table[Total[lpp/@Select[IntegerPartitions[ n], AllTrue[ #, OddQ]&]], {n, 60}] (* Harvey P. Dale, Apr 24 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved