login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092321 Sum of largest parts (counted with multiplicity) of all partitions of n. 12
0, 1, 4, 8, 17, 26, 49, 69, 115, 164, 249, 343, 513, 686, 974, 1314, 1806, 2382, 3232, 4208, 5597, 7244, 9456, 12118, 15687, 19899, 25422, 32079, 40589, 50796, 63805, 79303, 98817, 122179, 151145, 185820, 228598, 279476, 341807, 416051, 506205, 613244, 742720 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)

Margaret Archibald, A. Blecher, C. Brennan, A. Knopfmacher and T. Mansour, Partitions according to multiplicities and part sizes, Australasian Journal of Combinatorics, Volume 66(1) (2016), Pages 104-119.

Ljuben Mutafchiev, On the Largest Part Size and Its Multiplicity of a Random Integer Partition, arXiv:1712.03233 [math.PR], 2017.

FORMULA

G.f.: Sum_{n>=1} (n*x^n/(1-x^n))*Product_{k=1..n} 1/(1-x^k).

EXAMPLE

Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4) = 4*1 + 1*2 + 2*2 + 1*3 + 1*4 = 17.

MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, [1, 0],

      `if`(i<1, [0$2], b(n, i-1, t) +add((l->`if`(t, l,

       l+[0, l[1]*i*j]))(b(n-i*j, i-1, true)), j=1..n/i)))

    end:

a:= n-> b(n$2, false)[2]:

seq(a(n), n=0..50);  # Alois P. Heinz, Jan 29 2014

MATHEMATICA

f[n_] := Block[{c = 2n, k = 2, p = IntegerPartitions[n]}, m = Max @@@ p; l = Length[p]; While[k < l, c = c + m[[k]]*Count[p[[k]], m[[k]]]; k++ ]; If[n == 1, 1, c]]; Table[ f[n], {n, 41}] (* Robert G. Wilson v, Feb 18 2004, updated by Jean-François Alcover, Jan 29 2014 *)

nmax = 50; CoefficientList[Series[Sum[n*x^n/(1-x^n) * Product[1/(1 - x^k), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 06 2019 *)

Join[{0}, Table[Total[Flatten[First[Split[#]]&/@IntegerPartitions[n]]], {n, 50}]] (* Harvey P. Dale, Oct 29 2019 *)

CROSSREFS

Cf. A006128, A092314, A092322, A092269, A092309, A092313, A092310, A092311, A092268.

Sequence in context: A345432 A298950 A213494 * A026353 A067773 A301145

Adjacent sequences:  A092318 A092319 A092320 * A092322 A092323 A092324

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Feb 16 2004

EXTENSIONS

More terms from Robert G. Wilson v, Feb 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 20:51 EDT 2022. Contains 354092 sequences. (Running on oeis4.)