login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366157
The number of lit cells in weakly decreasing partitions of n when light shines from the north west. Here partitions are represented from left to right by columns of cells.
4
1, 4, 8, 17, 27, 49, 74, 118, 174, 263, 371, 540, 747, 1048, 1429, 1954, 2610, 3513, 4631, 6123, 7978, 10398, 13397, 17277, 22054, 28131, 35605, 45004, 56502, 70879, 88370, 110033, 136325, 168612, 207637, 255308, 312689, 382373, 466004, 566979, 687685, 832793, 1005654
OFFSET
1,2
REFERENCES
A. Blecher, A. Knopfmacher, and M. E. Mays, Casting light on integer partitions, preprint.
FORMULA
G.f.: Sum_{k>=0} (P(q)-T_q(k))
where P(q) is the partition g.f. Product_{i>=1} 1/(1-q^i)
and T_q(k)=Sum_{s=0..k} t[k,s] with t[r,s]=q^s*Sum_{i=0..s} t[r-1,i]
and initial conditions t[1,1]=q; t[2,1]=q(1+q); t[r,0]=1; t[r,s]=0 for s>r.
a(n) <= n * A000041(n). - David A. Corneth, Oct 04 2023
MATHEMATICA
T[r_, s_] := If[s > r, 0, If[s == 0, 1, If[r == 1 && s == 1, q, If[r == 2 && s == 1, q*(1 + q), q^s*Sum[T[r - 1, i], {i, 0, s}]]]]]; nmax = 15; Do[Print[SeriesCoefficient[Sum[PartitionsP[n]*q^n - Sum[T[r, s], {s, 0, r}], {r, 0, n}], {q, 0, n}]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 04 2023 *)
PROG
(PARI) a(n) = {my(res = 0); forpart(p = n, res+=qlit(p)); res}
qlit(v) = {my(res = v[#v], h = v[#v]-1); forstep(i = #v-1, 1, -1, res+=max(0, v[i]-h); h = max(h, v[i])-1); res} \\ David A. Corneth, Oct 04 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Arnold Knopfmacher, Oct 02 2023
EXTENSIONS
a(13)-a(15) from Vaclav Kotesovec, Oct 04 2023
More terms from David A. Corneth, Oct 04 2023
STATUS
approved