login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A366159
Triangle read by rows: T(n, k) = Sum_{i=0..k-2} (-1)^(i+2) * (k-i-1)^n * binomial(k,i).
1
1, 1, 5, 1, 13, 23, 1, 29, 121, 119, 1, 61, 479, 1081, 719, 1, 125, 1681, 6719, 10081, 5039, 1, 253, 5543, 35281, 90719, 100801, 40319, 1, 509, 17641, 168839, 665281, 1239839, 1088641, 362879, 1, 1021, 54959, 763561, 4339439, 12096001, 17539199, 12700801, 3628799
OFFSET
2,3
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2..150, flattened)
Dmitry N. Kozlov, Stirling complexes, arXiv:2309.17142 [math.CO], 2023.
EXAMPLE
Triangle begins:
1;
1, 5;
1, 13, 23;
1, 29, 121, 119;
1, 61, 479, 1081, 719;
1, 125, 1681, 6719, 10081, 5039;
1, 253, 5543, 35281, 90719, 100801, 40319;
1, 509, 17641, 168839, 665281, 1239839, 1088641, 362879;
1, 1021, 54959, 763561, 4339439, 12096001, 17539199, 12700801, 3628799;
...
MATHEMATICA
Table[Sum[(-1)^(i + 2)*(k - i - 1)^n*Binomial[k, i], {i, 0, k - 2} ], {n, 2, 10}, {k, 2, n}] // Flatten (* Michael De Vlieger, Oct 02 2023 *)
PROG
(PARI) T(n, k) = sum(i=0, k-2, (-1)^(i+2) * (k-i-1)^n * binomial(k, i));
tabl(nn) = for (n=2, nn, for (k=2, n, print1(T(n, k), ", ")));
CROSSREFS
Cf. A000012 (col 2), A036563 (col 3), A033312 (right border).
Cf. A105060.
Sequence in context: A205961 A146620 A300291 * A174504 A270654 A067558
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Oct 02 2023
STATUS
approved