OFFSET
1,3
COMMENTS
a(n) = Sum_{k>=0} A116860(n,k). - Emeric Deutsch, Feb 27 2006
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum((2*n-1)*x^(2*n-1)*Product(1+x^(2*k+1), k = n .. infinity), n = 1 .. infinity).
a(n) ~ 3^(3/4) * exp(Pi*sqrt(n/6)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018
EXAMPLE
a(13)=15 because the partitions of 13 into distinct odd parts are [13],[9,3,1] and [7,5,1], with sum of the smallest terms 13+1+1=15.
MAPLE
f:=sum((2*n-1)*x^(2*n-1)*product(1+x^(2*k+1), k=n..40), n=1..40): fser:=simplify(series(f, x=0, 66)): seq(coeff(fser, x^n), n=1..63); # Emeric Deutsch, Feb 27 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+2)+b(n-i, i+2)))
end:
a:= n-> add(`if`(j::odd, j*b(n-j, j+2), 0), j=1..n):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 03 2016
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j + 1), {j, k, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 15 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved