login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092319
Sum of smallest parts of all partitions of n into odd distinct parts.
4
1, 0, 3, 1, 5, 1, 7, 4, 10, 4, 12, 9, 15, 9, 20, 17, 23, 17, 28, 27, 36, 28, 41, 43, 50, 44, 62, 62, 71, 66, 84, 91, 103, 96, 119, 127, 139, 137, 167, 178, 191, 192, 223, 241, 266, 264, 302, 331, 351, 360, 411, 439, 469, 485, 542, 587, 628, 646, 714, 773, 819, 854, 945
OFFSET
1,3
COMMENTS
a(n) = Sum_{k>=0} A116860(n,k). - Emeric Deutsch, Feb 27 2006
LINKS
FORMULA
G.f.: Sum((2*n-1)*x^(2*n-1)*Product(1+x^(2*k+1), k = n .. infinity), n = 1 .. infinity).
a(n) ~ 3^(3/4) * exp(Pi*sqrt(n/6)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018
EXAMPLE
a(13)=15 because the partitions of 13 into distinct odd parts are [13],[9,3,1] and [7,5,1], with sum of the smallest terms 13+1+1=15.
MAPLE
f:=sum((2*n-1)*x^(2*n-1)*product(1+x^(2*k+1), k=n..40), n=1..40): fser:=simplify(series(f, x=0, 66)): seq(coeff(fser, x^n), n=1..63); # Emeric Deutsch, Feb 27 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+2)+b(n-i, i+2)))
end:
a:= n-> add(`if`(j::odd, j*b(n-j, j+2), 0), j=1..n):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 03 2016
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j + 1), {j, k, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *)
CROSSREFS
Cf. A092316.
Cf. A116860.
Sequence in context: A136180 A095112 A160596 * A254938 A244149 A378642
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 15 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved