login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213357
E.g.f. satisfies A(x) = 1 + (exp(x) - 1) * A(exp(x) - 1).
7
1, 1, 3, 16, 133, 1561, 24374, 485640, 11969843, 356348290, 12572687675, 517644938724, 24553141710156, 1327223189312606, 81005220402829714, 5537660009982114858, 421050946315817655785, 35387457515051683169307, 3269500807582223015227780
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * a(k-1) * Stirling2(n, k) if n>0.
A048801(n) = n * a(n-1) = Sum_{k=1..n} a(k) * Stirling1(n, k) if n>0.
EXAMPLE
1 + x + 3*x^2 + 16*x^3 + 133*x^4 + 1561*x^5 + 24374*x^6 + 485640*x^7 + ...
MATHEMATICA
nmax=20; b = ConstantArray[0, nmax+1]; b[[1]]=1; Do[b[[n+1]] = Sum[k*b[[k]]*StirlingS2[n, k], {k, 1, n}], {n, 1, nmax-1}]; b (* Vaclav Kotesovec, Mar 12 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = subst( 1 + x * A, x, exp( x + x * (A - A)) - 1)); n! * polcoeff( A, n))}
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*stirling(i, j, 2)*v[j])); v; \\ Seiichi Manyama, Jun 04 2022
CROSSREFS
Sequence in context: A341852 A141628 A048802 * A119392 A307979 A129043
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 09 2012
STATUS
approved