OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
FORMULA
E.g.f. A(x) satisfies: A(x) = 1 - log(1-x)*A(-log(1-x)).
a(n) = Sum_{k=1..n} ( k*(-1)^(n-k)*stirling1(n,k)*a(k-1) ), n>0, a(0)=1. - Vladimir Kruchinin, Nov 28 2011
MATHEMATICA
Clear[a]; a[0]:= 1; a[n_]:= a[n] = Sum[k*(-1)^(n - k)*StirlingS1[n, k]*a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Nov 05 2016 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1-log(1-x+x*O(x^n))* (subst(A, x, -log(1-x+x*O(x^n))))); n!*polcoeff(A, n)}
(Maxima)
a(n):=if n=0 then 1 else sum(k*(-1)^(n-k)*stirling1(n, k)*a(k-1), k, 1, n); /* Vladimir Kruchinin, Nov 28 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2007
STATUS
approved