login
A281977
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and -7*x - 8*y + 8*z + 16*w are squares.
10
1, 1, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 5, 3, 1, 1, 3, 2, 6, 3, 5, 2, 2, 2, 3, 5, 1, 4, 4, 1, 3, 2, 7, 10, 3, 3, 3, 3, 1, 1, 4, 4, 3, 5, 2, 2, 2, 1, 7, 6, 5, 5, 3, 3, 2, 2, 2, 6, 2, 2, 10, 4, 2, 2, 4, 6, 4, 3, 5, 2, 3, 2, 5, 7, 4, 8, 6, 2, 3
OFFSET
0,3
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,....
The author has proved that any nonnegative integer can be written as the sum of a fourth power and three squares.
We have verified the conjecture for all n = 0..10^6.
See also A281976, A282013 and A282014 for similar conjectures.
Qing-Hu Hou at Tianjin University verified a(n) > 0 for n up to 10^8. - Zhi-Wei Sun, Jun 02 2019
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0^2 and -7*0 - 8*0 + 8*0 + 16*1 = 4^2.
a(12) = 1 since 12 = 1^2 + 1^2 + 3^2 + 1^2 with 1 = 1^2 and -7*1 - 8*1 + 8*3 + 16*1 = 5^2.
a(17) = 1 since 17 = 1^2 + 0^2 + 4^2 + 0^2 with 1 = 1^2 and -7*1 - 8*0 + 8*4 + 16*0 = 5^2.
a(28) = 1 since 28 = 4^2 + 2^2 + 2^2 + 2^2 with 4 = 2^2 and -7*4 - 8*2 + 8*2 + 16*2 = 2^2.
a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 = 1^2 and -7*1 - 8*1 + 8*2 + 16*5 = 9^2.
a(40) = 1 since 40 = 4^2 + 2^2 + 2^2 + 4^2 with 4 = 2^2 and -7*4 -8*2 + 8*2 + 16*4 = 6^2.
a(41) = 1 since 41 = 1^2 + 2^2 + 6^2 + 0^2 with 1 = 1^2 and -7*1 - 8*2 + 8*6 + 16*0 = 5^2.
a(49) = 1 since 49 = 0^2 + 6^2 + 2^2 + 3^2 with 0 = 0^2 and -7*0 - 8*6 + 8*2 + 16*3 = 4^2.
a(241) = 1 since 241 = 9^2 + 4^2 + 12^2 + 0^2 with 9 = 3^2 and -7*9 - 8*4 + 8*12 + 16*0 = 1^2.
a(433) = 1 since 433 = 16^2 + 8^2 + 8^2 + 7^2 with 16 = 4^2 and -7*16 - 8*8 + 8*8 + 16*7 = 0^2.
a(1113) = 1 since 1113 = 1^2 + 30^2 + 4^2 + 14^2 with 1 = 1^2 and -7*1 - 8*30 + 8*4 + 16*14 = 3^2.
a(1521) = 1 since 1521 = 0^2 + 22^2 + 14^2 + 29^2 with 0 = 0^2 and -7*0 - 8*22 + 8*14 + 16*29 = 20^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^4-y^2-z^2]&&SQ[16*Sqrt[n-x^4-y^2-z^2]+8z-8y-7x^2], r=r+1], {x, 0, n^(1/4)}, {y, 0, Sqrt[n-x^4]}, {z, 0, Sqrt[n-x^4-y^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 04 2017
STATUS
approved