OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 5, 8, 14, 31, 47, 71, 79, 143, 248, 463, 1039).
The author has proved that any nonnegative integer can be written as the sum of a fourth power and three squares.
We have verified a(n) > 0 for all n = 0..10^7.
Qing-Hu Hou at Tianjin University verified a(n) > 0 for n up to 10^9. - Zhi-Wei Sun, Jun 02 2019
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(5) = 1 since 5 = 1^2 + 0^2 + 0^2 + 2^2 with 1 = 1^2 and 49*1 + 48*(0-0) = 7^2.
a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 0 = 0^2 and 49*0 + 48*(2-2) = 0^2.
a(14) = 1 since 14 = 1^2 + 2^2 + 3^2 + 0^2 with 1 = 1^2 and 49*1 + 48*(2-3) = 1^2.
a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(1-2) = 1^2.
a(47) = 1 since 47 = 1^2 + 6^2 + 1^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(6-1) = 17^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 6^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2.
a(79) = 1 since 79 = 1^2 + 7^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(7-2) = 17^2.
a(143) = 1 since 143 = 1^2 + 5^2 + 6^2 + 9^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2.
a(248) = 1 since 248 = 4^2 + 6^2 + 0^2 + 14^2 with 4 = 2^2 and 49*4 + 48*(6-0) = 22^2.
a(463) = 1 since 463 = 9^2 + 6^2 + 15^2 + 11^2 with 9 = 3^2 and 49*9 + 48*(6-15) = 3^2.
a(1039) = 1 since 1039 = 1^2 + 22^2 + 23^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(22-23) = 1^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^4-y^2-z^2]&&SQ[49x^2+48(y-z)], r=r+1], {x, 0, n^(1/4)}, {y, 0, Sqrt[n-x^4]}, {z, 0, Sqrt[n-x^4-y^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 04 2017
STATUS
approved