login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282013
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and 49*x + 48*(y-z) are squares.
9
1, 2, 3, 3, 2, 1, 3, 2, 1, 4, 4, 2, 2, 2, 1, 2, 2, 4, 8, 4, 3, 2, 3, 2, 3, 5, 5, 7, 3, 2, 5, 1, 3, 7, 6, 5, 5, 3, 5, 3, 2, 3, 9, 5, 2, 6, 3, 1, 3, 5, 5, 10, 6, 2, 8, 4, 3, 5, 6, 3, 3, 3, 4, 4, 2, 5, 9, 8, 5, 4, 6, 1, 5, 6, 5, 9, 2, 3, 7, 1, 1
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 5, 8, 14, 31, 47, 71, 79, 143, 248, 463, 1039).
The author has proved that any nonnegative integer can be written as the sum of a fourth power and three squares.
We have verified a(n) > 0 for all n = 0..10^7.
See also A281976, A281977 and A282014 for similar conjectures.
Qing-Hu Hou at Tianjin University verified a(n) > 0 for n up to 10^9. - Zhi-Wei Sun, Jun 02 2019
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(5) = 1 since 5 = 1^2 + 0^2 + 0^2 + 2^2 with 1 = 1^2 and 49*1 + 48*(0-0) = 7^2.
a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 0 = 0^2 and 49*0 + 48*(2-2) = 0^2.
a(14) = 1 since 14 = 1^2 + 2^2 + 3^2 + 0^2 with 1 = 1^2 and 49*1 + 48*(2-3) = 1^2.
a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(1-2) = 1^2.
a(47) = 1 since 47 = 1^2 + 6^2 + 1^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(6-1) = 17^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 6^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2.
a(79) = 1 since 79 = 1^2 + 7^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(7-2) = 17^2.
a(143) = 1 since 143 = 1^2 + 5^2 + 6^2 + 9^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2.
a(248) = 1 since 248 = 4^2 + 6^2 + 0^2 + 14^2 with 4 = 2^2 and 49*4 + 48*(6-0) = 22^2.
a(463) = 1 since 463 = 9^2 + 6^2 + 15^2 + 11^2 with 9 = 3^2 and 49*9 + 48*(6-15) = 3^2.
a(1039) = 1 since 1039 = 1^2 + 22^2 + 23^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(22-23) = 1^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^4-y^2-z^2]&&SQ[49x^2+48(y-z)], r=r+1], {x, 0, n^(1/4)}, {y, 0, Sqrt[n-x^4]}, {z, 0, Sqrt[n-x^4-y^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 04 2017
STATUS
approved