|
|
A114254
|
|
Sum of all terms on the two principal diagonals of a 2n+1 X 2n+1 square spiral.
|
|
8
|
|
|
1, 25, 101, 261, 537, 961, 1565, 2381, 3441, 4777, 6421, 8405, 10761, 13521, 16717, 20381, 24545, 29241, 34501, 40357, 46841, 53985, 61821, 70381, 79697, 89801, 100725, 112501, 125161, 138737, 153261, 168765, 185281, 202841, 221477, 241221
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The 3 X 3 and 5 X 5 spirals are
.
7---8---9
|
6 1---2
| |
5---4---3
with 7+9+1+5+3=25
and
.
21--22--23--24--25
|
20 7---8---9--10
| | |
19 6 1---2 11
| | | |
18 5---4---3 12
| |
17--16--15--14--13
with 21+25+7+9+1+5+3+17+13=101.
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Project Euler, Problem 28
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
|
|
FORMULA
|
O.g.f.: 3/(-1+x)+16/(-1+x)^2+44/(-1+x)^3+32/(-1+x)^4 = (1+21*x+7*x^2+3*x^3)/(-1+x)^4 . - R. J. Mathar, Feb 10 2008
a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3. [Corrected by Arie Groeneveld, Aug 17 2008]
|
|
MATHEMATICA
|
Array[1 + 10 #^2 + (16 #^3 + 26 #)/3 &, 36, 0] (* Michael De Vlieger, Mar 01 2018 *)
|
|
PROG
|
(PARI) a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3; \\ Joerg Arndt, Mar 01 2018
|
|
CROSSREFS
|
Cf. A016754, A054569, A053755, A054554 for diagonals from origin.
Cf. A325958 (first differences).
Sequence in context: A356533 A221274 A042220 * A042222 A158551 A044276
Adjacent sequences: A114251 A114252 A114253 * A114255 A114256 A114257
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
William A. Tedeschi, Feb 06 2008, Mar 01 2008
|
|
STATUS
|
approved
|
|
|
|