|
|
A042220
|
|
Numerators of continued fraction convergents to sqrt(636).
|
|
2
|
|
|
25, 101, 126, 227, 807, 2648, 32583, 100397, 333774, 434171, 767945, 3505951, 176065495, 707767931, 883833426, 1591601357, 5658637497, 18567513848, 228468803673, 703973924867, 2340390578274, 3044364503141
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Conjecture: satisfies a linear recurrence having signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7011902, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1). - Harvey P. Dale, May 08 2022
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
|
|
MATHEMATICA
|
Numerator[Convergents[Sqrt[636], 30]] (* Harvey P. Dale, Sep 17 2013 *)
|
|
CROSSREFS
|
Cf. A042221.
Sequence in context: A309779 A356533 A221274 * A114254 A042222 A158551
Adjacent sequences: A042217 A042218 A042219 * A042221 A042222 A042223
|
|
KEYWORD
|
nonn,cofr,frac,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|