The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016850 a(n) = (5n)^2. 8

%I

%S 0,25,100,225,400,625,900,1225,1600,2025,2500,3025,3600,4225,4900,

%T 5625,6400,7225,8100,9025,10000,11025,12100,13225,14400,15625,16900,

%U 18225,19600,21025,22500,24025,25600

%N a(n) = (5n)^2.

%C If we define C(n) = (5*n)^2 (n > 0), the sequence is the first "square-sequence" such that for every n there exists p such that C(n) = C(p) + C(p+n). We observe in fact that p = 3n because 25 = 3^2 + 4^2. The sequence without 0 is linked with the first nontrivial solution (trivial: n^2 = 0^2 + n^2) of the equation X^2 = 2Y^2 + 2n^2 where X = 2*k and Y = 2*p + n which is equivalent to k^2 = p^2 + (p+n)^2 for n given. The second such "square-sequence" is (29*n)^2 (n > 0) because 29^2 = 20^2 + 21^2 and with this relation we obtain (29*n)^2 = (20*n)^2 + (20n+n)^2. - _Richard Choulet_, Dec 23 2007

%H Vincenzo Librandi, <a href="/A016850/b016850.txt">Table of n, a(n) for n = 0..800</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 25*n^2 = 25*A000290(n) = 5*A033429(n). - _Omar E. Pol_, Jul 03 2014

%t (5Range[0, 31])^2 (* _Alonso del Arte_, Oct 08 2017 *)

%o (MAGMA) [(5*n)^2: n in [0..50]]; // _Vincenzo Librandi_, Apr 26 2011

%o (PARI) a(n)=(5*n)^2 \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Similar sequences listed in A244630.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 09:03 EDT 2020. Contains 336201 sequences. (Running on oeis4.)