|
|
A017162
|
|
a(n) = (9*n)^2.
|
|
3
|
|
|
0, 81, 324, 729, 1296, 2025, 2916, 3969, 5184, 6561, 8100, 9801, 11664, 13689, 15876, 18225, 20736, 23409, 26244, 29241, 32400, 35721, 39204, 42849, 46656, 50625, 54756, 59049, 63504, 68121, 72900
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=81, a(2)=324. - Harvey P. Dale, Nov 06 2012
Sum_{n>=1} 1/a(n) = Pi^2/486.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/972.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/9)/(Pi/9).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/9)/(Pi/9). (End)
|
|
MATHEMATICA
|
(9*Range[0, 30])^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 81, 324}, 40] (* Harvey P. Dale, Nov 06 2012 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|