login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303815 Generalized 29-gonal (or icosienneagonal) numbers: m*(27*m - 25)/2 with m = 0, +1, -1, +2, -2, +3, -3, ... 31
0, 1, 26, 29, 79, 84, 159, 166, 266, 275, 400, 411, 561, 574, 749, 764, 964, 981, 1206, 1225, 1475, 1496, 1771, 1794, 2094, 2119, 2444, 2471, 2821, 2850, 3225, 3256, 3656, 3689, 4114, 4149, 4599, 4636, 5111, 5150, 5650, 5691, 6216, 6259, 6809, 6854, 7429, 7476, 8076 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Numbers k such that 216*k + 625 is a square. - Bruno Berselli, Jun 08 2018

Partial sums of A317325.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

From Bruno Berselli, Jun 07 2018: (Start)

G.f.: x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3).

a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).

a(n) = (54*n*(n + 1) + 23*(2*n + 1)*(-1)^n - 23)/16. Therefore:

a(n) = n*(27*n + 50)/8, if n is even, or (n + 1)*(27*n - 23)/8 otherwise.

2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) - n*(27*n^2 - 25) = 0. (End)

MATHEMATICA

Table[(54 n (n + 1) + 23 (2 n + 1) (-1)^n - 23)/16, {n, 0, 50}] (* Bruno Berselli, Jun 07 2018 *)

CoefficientList[ Series[-x (x^2 + 25x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)

LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 26, 29, 79, 84}, 50] (* Robert G. Wilson v, Jul 28 2018 *)

PROG

(PARI) concat(0, Vec(x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

CROSSREFS

Cf. A255187, A277990 (see the third comment), A316672, A317325.

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), this sequence (k=29), A316729 (k=30).

Sequence in context: A106550 A304949 A316617 * A069962 A178098 A278779

Adjacent sequences:  A303812 A303813 A303814 * A303816 A303817 A303818

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Jun 06 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 3 04:21 EDT 2020. Contains 333195 sequences. (Running on oeis4.)