login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317325
Multiples of 25 and odd numbers interleaved.
4
0, 1, 25, 3, 50, 5, 75, 7, 100, 9, 125, 11, 150, 13, 175, 15, 200, 17, 225, 19, 250, 21, 275, 23, 300, 25, 325, 27, 350, 29, 375, 31, 400, 33, 425, 35, 450, 37, 475, 39, 500, 41, 525, 43, 550, 45, 575, 47, 600, 49, 625, 51, 650, 53, 675, 55, 700, 57, 725, 59, 750, 61, 775, 63, 800, 65, 825, 67, 850, 69
OFFSET
0,3
COMMENTS
Partial sums give the generalized 29-gonal numbers (A303815).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 29-gonal numbers.
FORMULA
a(2n) = 25*n, a(2n+1) = 2*n + 1.
G.f.: x*(1 + 25*x + x^2)/((1 - x)^2*(1 + x)^2). - Vincenzo Librandi, Jul 28 2018
a(n) = 2*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 29 2018
Multiplicative with a(2^e) = 25*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 23/2^s). - Amiram Eldar, Oct 26 2023
MAPLE
seq(op([25*n, 2*n+1]), n=0..40); # Muniru A Asiru, Jul 28 2018
MATHEMATICA
With[{nn=30}, Riffle[25 Range[0, nn], 2 Range[0, nn] + 1]] (* Vincenzo Librandi, Jul 28 2018 *)
PROG
(Magma) &cat[[25*n, 2*n + 1]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2018
(GAP) Flat(List([0..40], n->[25*n, 2*n+1])); # Muniru A Asiru, Jul 28 2018
(PARI) concat(0, Vec(x*(1 + 25*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018
CROSSREFS
Cf. A008607 and A005408 interleaved.
Column 25 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303815.
Sequence in context: A040612 A040614 A040615 * A040610 A158786 A040611
KEYWORD
nonn,easy,mult,changed
AUTHOR
Omar E. Pol, Jul 25 2018
STATUS
approved