OFFSET
0,3
COMMENTS
This is 5*n/2 if n is even, n if n is odd.
Partial sums give the generalized enneagonal numbers A118277.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized enneagonal numbers. - Omar E. Pol, Jul 27 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
a(2n) = 5n, a(2n+1) = 2n+1.
G.f.: x*(1+5*x+x^2) / ((x-1)^2*(x+1)^2). - Alois P. Heinz, Sep 26 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = (7+3*(-1)^n)*n/4.
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) + a(n-1) = A047336(n). (End)
Multiplicative with a(2^e) = 5*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 3/2^s). - Amiram Eldar, Oct 25 2023
MATHEMATICA
With[{nn=40}, Riffle[5*Range[0, nn], Range[1, 2nn+1, 2]]] (* or *) LinearRecurrence[ {0, 2, 0, -1}, {0, 1, 5, 3}, 80] (* Harvey P. Dale, Dec 15 2014 *)
PROG
(Magma) &cat[[5*n, 2*n+1]: n in [0..31]]; // Bruno Berselli, Sep 27 2011
(PARI) a(n)=(7+3*(-1)^n)*n/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Omar E. Pol, Sep 10 2011
EXTENSIONS
Corrected and edited by Alois P. Heinz, Sep 25 2011
STATUS
approved