login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195140
Multiples of 5 and odd numbers interleaved.
23
0, 1, 5, 3, 10, 5, 15, 7, 20, 9, 25, 11, 30, 13, 35, 15, 40, 17, 45, 19, 50, 21, 55, 23, 60, 25, 65, 27, 70, 29, 75, 31, 80, 33, 85, 35, 90, 37, 95, 39, 100, 41, 105, 43, 110, 45, 115, 47, 120, 49, 125, 51, 130, 53, 135, 55, 140, 57, 145, 59, 150, 61, 155, 63
OFFSET
0,3
COMMENTS
This is 5*n/2 if n is even, n if n is odd.
Partial sums give the generalized enneagonal numbers A118277.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized enneagonal numbers. - Omar E. Pol, Jul 27 2018
FORMULA
a(2n) = 5n, a(2n+1) = 2n+1.
G.f.: x*(1+5*x+x^2) / ((x-1)^2*(x+1)^2). - Alois P. Heinz, Sep 26 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = (7+3*(-1)^n)*n/4.
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) + a(n-1) = A047336(n). (End)
Multiplicative with a(2^e) = 5*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 3/2^s). - Amiram Eldar, Oct 25 2023
MATHEMATICA
With[{nn=40}, Riffle[5*Range[0, nn], Range[1, 2nn+1, 2]]] (* or *) LinearRecurrence[ {0, 2, 0, -1}, {0, 1, 5, 3}, 80] (* Harvey P. Dale, Dec 15 2014 *)
PROG
(Magma) &cat[[5*n, 2*n+1]: n in [0..31]]; // Bruno Berselli, Sep 27 2011
(PARI) a(n)=(7+3*(-1)^n)*n/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
A008587 and A005408 interleaved.
Column 5 of A195151.
Cf. Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, this sequence, zero together with A165998, A195159, A195161, A195312.
Sequence in context: A221715 A248660 A141620 * A049829 A258333 A137613
KEYWORD
nonn,easy,mult
AUTHOR
Omar E. Pol, Sep 10 2011
EXTENSIONS
Corrected and edited by Alois P. Heinz, Sep 25 2011
STATUS
approved