login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195161
Multiples of 8 and odd numbers interleaved.
26
0, 1, 8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59
OFFSET
0,3
COMMENTS
A008590 and A005408 interleaved. This is 8*n if n is even, n if n is odd, if n>=0.
Partial sums give the generalized 12-gonal (or dodecagonal) numbers A195162.
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (- 4*log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 12-gonal numbers. - Omar E. Pol, Jul 27 2018
FORMULA
a(2n) = 8n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
a(n) = (6*(-1)^n+10)*n/4. - Vincenzo Librandi, Sep 27 2011
a(n) = 2*a(n-2)-a(n-4). G.f.: x*(1+8*x+x^2)/((1-x)^2*(1+x)^2). - Colin Barker, Aug 11 2012
From Ilya Gutkovskiy, Jul 03 2016: (Start)
a(m*2^k) = m*2^(k+2), k>0.
E.g.f.: x*(4*sinh(x) + cosh(x)).
Dirichlet g.f.: 2^(-s)*(2^s + 6)*zeta(s-1). (End)
Multiplicative with a(2^e) = 4*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A144433(n-1) for n > 1. - Georg Fischer, Oct 14 2018
MAPLE
a := proc(n): (6*(-1)^n+10)*n/4 end: seq(a(n), n=0..59); # Johannes W. Meijer, Jul 03 2016
MATHEMATICA
With[{nn=30}, Riffle[8*Range[0, nn], 2*Range[0, nn]+1]] (* or *) LinearRecurrence[{0, 2, 0, -1}, {0, 1, 8, 3}, 60] (* Harvey P. Dale, Nov 24 2013 *)
PROG
(Magma) &cat[[8*n, 2*n+1]: n in [0..30]]; // Vincenzo Librandi, Sep 27 2011
(PARI) concat(0, Vec(x*(1+8*x+x^2)/((1-x)^2*(1+x)^2) + O(x^99))) \\ Altug Alkan, Jul 04 2016
CROSSREFS
Column 8 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, this sequence, A195312.
Cf. A144433.
Sequence in context: A286568 A070608 A070486 * A144433 A274401 A228691
KEYWORD
nonn,easy,mult
AUTHOR
Omar E. Pol, Sep 10 2011
STATUS
approved