login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195163
1000-gonal numbers: a(n) = n*(499*n - 498).
4
0, 1, 1000, 2997, 5992, 9985, 14976, 20965, 27952, 35937, 44920, 54901, 65880, 77857, 90832, 104805, 119776, 135745, 152712, 170677, 189640, 209601, 230560, 252517, 275472, 299425, 324376, 350325, 377272, 405217, 434160, 464101, 495040, 526977, 559912, 593845, 628776
OFFSET
0,3
COMMENTS
a(A271470(n)) is a perfect square. In fact, a(A271470(n)) = A271105(n) if the first term of a(n) is 1. - Muniru A Asiru, Apr 10 2016
LINKS
M. A. Asiru, All square chiliagonal numbers, Int J Math Educ Sci Technol, 47:7(2016), 1123-1134.
FORMULA
a(n) = 998*n*(n-1)/2 + n, according to the common formula for s-gonal numbers, a(n) = (s-2)*n*(n-1)/2 + n. - Sergey Pavlov, Aug 14 2015
G.f.: x*(1+997*x)/(1-x)^3. - R. J. Mathar, Sep 12 2011
E.g.f.: exp(x)*x*(1 + 499*x). - Ilya Gutkovskiy, Apr 10 2016
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - Muniru A Asiru, Sep 12 2017
MAPLE
A195163:=n->n*(499*n - 498): seq(A195163(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 1, 1000}, 50] (* Vincenzo Librandi, Nov 25 2011 *)
PolygonalNumber[1000, Range[0, 40]] (* Harvey P. Dale, Sep 15 2022 *)
PROG
(PARI) a(n)=n*(499*n-498) \\ Charles R Greathouse IV, Sep 11 2011
(PARI) x='x+O('x^99); concat(0, Vec(x*(1+997*x)/(1-x)^3)) \\ Altug Alkan, Apr 10 2016
(Magma) [n*(499*n-498): n in [0..45]]; // Vincenzo Librandi, Nov 25 2011
(JavaScript) function a(n){return 998*n*(n-1)/2+n} // Sergey Pavlov, Aug 14 2015
(GAP)
a:=[0, 1, 1000];; for n in [4..10^2] do a[n]:=3*a[n-1]-3*a[n-2]+*a[n-3]; od; a; # Muniru A Asiru, Sep 12 2017
CROSSREFS
Sequence in context: A168650 A043491 A100988 * A017175 A019548 A017271
KEYWORD
nonn,easy
AUTHOR
Kausthub Gudipati, Sep 10 2011
STATUS
approved