login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1000-gonal numbers: a(n) = n*(499*n - 498).
4

%I #56 Sep 15 2022 13:07:45

%S 0,1,1000,2997,5992,9985,14976,20965,27952,35937,44920,54901,65880,

%T 77857,90832,104805,119776,135745,152712,170677,189640,209601,230560,

%U 252517,275472,299425,324376,350325,377272,405217,434160,464101,495040,526977,559912,593845,628776

%N 1000-gonal numbers: a(n) = n*(499*n - 498).

%C a(A271470(n)) is a perfect square. In fact, a(A271470(n)) = A271105(n) if the first term of a(n) is 1. - _Muniru A Asiru_, Apr 10 2016

%H Vincenzo Librandi, <a href="/A195163/b195163.txt">Table of n, a(n) for n = 0..10000</a>

%H M. A. Asiru, <a href="http://dx.doi.org/10.1080/0020739X.2016.1164346">All square chiliagonal numbers</a>, Int J Math Educ Sci Technol, 47:7(2016), 1123-1134.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 998*n*(n-1)/2 + n, according to the common formula for s-gonal numbers, a(n) = (s-2)*n*(n-1)/2 + n. - _Sergey Pavlov_, Aug 14 2015

%F G.f.: x*(1+997*x)/(1-x)^3. - _R. J. Mathar_, Sep 12 2011

%F E.g.f.: exp(x)*x*(1 + 499*x). - _Ilya Gutkovskiy_, Apr 10 2016

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - _Muniru A Asiru_, Sep 12 2017

%p A195163:=n->n*(499*n - 498): seq(A195163(n), n=0..50); # _Wesley Ivan Hurt_, Sep 16 2017

%t LinearRecurrence[{3,-3,1},{0,1,1000},50] (* _Vincenzo Librandi_, Nov 25 2011 *)

%t PolygonalNumber[1000,Range[0,40]] (* _Harvey P. Dale_, Sep 15 2022 *)

%o (PARI) a(n)=n*(499*n-498) \\ _Charles R Greathouse IV_, Sep 11 2011

%o (PARI) x='x+O('x^99); concat(0, Vec(x*(1+997*x)/(1-x)^3)) \\ _Altug Alkan_, Apr 10 2016

%o (Magma) [n*(499*n-498): n in [0..45]]; // _Vincenzo Librandi_, Nov 25 2011

%o (JavaScript) function a(n){return 998*n*(n-1)/2+n} // _Sergey Pavlov_, Aug 14 2015

%o (GAP)

%o a:=[0,1,1000];; for n in [4..10^2] do a[n]:=3*a[n-1]-3*a[n-2]+*a[n-3]; od; a; # _Muniru A Asiru_, Sep 12 2017

%Y Cf. A000578, A092182.

%K nonn,easy

%O 0,3

%A _Kausthub Gudipati_, Sep 10 2011