login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317323
Multiples of 23 and odd numbers interleaved.
4
0, 1, 23, 3, 46, 5, 69, 7, 92, 9, 115, 11, 138, 13, 161, 15, 184, 17, 207, 19, 230, 21, 253, 23, 276, 25, 299, 27, 322, 29, 345, 31, 368, 33, 391, 35, 414, 37, 437, 39, 460, 41, 483, 43, 506, 45, 529, 47, 552, 49, 575, 51, 598, 53, 621, 55, 644, 57, 667, 59, 690, 61, 713, 63, 736, 65, 759, 67, 782, 69
OFFSET
0,3
COMMENTS
Partial sums give the generalized 27-gonal numbers (A316725).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 27-gonal numbers.
FORMULA
a(2n) = 23*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 23*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 23*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 21/2^s). - Amiram Eldar, Oct 26 2023
MATHEMATICA
With[{nn=40}, Riffle[23*Range[0, nn], Range[1, 2*nn, 2]]] (* or *) LinearRecurrence[{0, 2, 0, -1}, {0, 1, 23, 3}, 80] (* Harvey P. Dale, May 05 2019 *)
PROG
(PARI) concat(0, Vec(x*(1 + 23*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018
CROSSREFS
Cf. A008605 and A005408 interleaved.
Column 23 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A316725.
Sequence in context: A040519 A040520 A271473 * A040515 A040516 A040513
KEYWORD
nonn,easy,mult,changed
AUTHOR
Omar E. Pol, Jul 25 2018
STATUS
approved