login
A195817
Multiples of 10 and odd numbers interleaved.
19
0, 1, 10, 3, 20, 5, 30, 7, 40, 9, 50, 11, 60, 13, 70, 15, 80, 17, 90, 19, 100, 21, 110, 23, 120, 25, 130, 27, 140, 29, 150, 31, 160, 33, 170, 35, 180, 37, 190, 39, 200, 41, 210, 43, 220, 45, 230, 47, 240, 49, 250, 51, 260, 53, 270, 55, 280, 57, 290, 59, 300
OFFSET
0,3
COMMENTS
A008592 and A005408 interleaved.
Partial sums give the generalized 14-gonal (or tetradecagonal) numbers A195818.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized 14-gonal numbers. - Omar E. Pol, Jul 27 2018
FORMULA
a(n) = (2*(-1)^n+3)*n. - Vincenzo Librandi, Sep 30 2011
From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(1+10*x+x^2)/((1-x)^2*(1+x)^2).
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) * a(n+1) = a(n(n+1)).
a(n) + a(n+1) = A091998(n+1). (End)
a(0)=0, a(1)=1, a(2)=10, a(3)=3, a(n)=2*a(n-2)-a(n-4). - Harvey P. Dale, Nov 24 2013
Multiplicative with a(2^e) = 5*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 2^(3-s)). - Amiram Eldar, Oct 25 2023
MATHEMATICA
With[{nn=30}, Riffle[10*Range[0, nn], Range[1, 2*nn+1, 2]]] (* or *) LinearRecurrence[{0, 2, 0, -1}, {0, 1, 10, 3}, 70] (* Harvey P. Dale, Nov 24 2013 *)
PROG
(Magma) [(2*(-1)^n+3)*n: n in [0..60]]; // Vincenzo Librandi, Sep 30 2011
(PARI) a(n) = (2*(-1)^n+3)*n; \\ Andrew Howroyd, Jul 23 2018
CROSSREFS
Column 10 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, A195161, A195312, this sequence.
Sequence in context: A050133 A068608 A358278 * A347126 A228314 A243239
KEYWORD
nonn,easy,mult
AUTHOR
Omar E. Pol, Sep 29 2011
STATUS
approved