login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195820
Total number of smallest parts in all partitions of n that do not contain 1 as a part.
13
0, 1, 1, 3, 2, 7, 5, 12, 13, 22, 22, 43, 43, 67, 81, 117, 133, 195, 223, 312, 373, 492, 584, 782, 925, 1190, 1433, 1820, 2170, 2748, 3268, 4075, 4872, 5997, 7150, 8781, 10420, 12669, 15055, 18198, 21535, 25925, 30602, 36624, 43201, 51428, 60478, 71802, 84215
OFFSET
1,4
COMMENTS
Total number of smallest parts in all partitions of the head of the last section of the set of partitions of n.
FORMULA
a(n) = A092269(n) - A000070(n-1).
G.f.: Sum_{i>=2} x^i/(1 - x^i) * Product_{j>=i} 1/(1 - x^j). - Ilya Gutkovskiy, Apr 03 2017
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) * (1 - (72 + 5*Pi^2)*sqrt(6) / (144*Pi*sqrt(n))). - Vaclav Kotesovec, Jul 31 2017
EXAMPLE
For n = 8 the seven partitions of 8 that do not contain 1 as a part are:
. (8)
. (4) + (4)
. 5 + (3)
. 6 + (2)
. 3 + 3 + (2)
. 4 + (2) + (2)
. (2) + (2) + (2) + (2)
Note that in every partition the smallest parts are shown between parentheses. The total number of smallest parts is 1+2+1+1+1+2+4 = 12, so a(8) = 12.
MAPLE
b:= proc(n, i) option remember;
`if`(n=0 or i<2, 0, b(n, i-1)+
add(`if`(n=i*j, j, b(n-i*j, i-1)), j=1..n/i))
end:
a:= n-> b(n, n):
seq(a(n), n=1..60); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
Table[s = Select[IntegerPartitions[n], ! MemberQ[#, 1] &]; Plus @@ Table[Count[x, Min[x]], {x, s}], {n, 50}] (* T. D. Noe, Oct 19 2011 *)
b[n_, i_] := b[n, i] = If[n==0 || i<2, 0, b[n, i-1] + Sum[If[n== i*j, j, b[n-i*j, i-1]], {j, 1, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
PROG
(Sage)
def A195820(n):
return sum(list(p).count(min(p)) for p in Partitions(n, min_part=2))
# D. S. McNeil, Oct 19 2011
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 19 2011
EXTENSIONS
More terms from D. S. McNeil, Oct 19 2011
STATUS
approved