login
A138135
Number of parts > 1 in the last section of the set of partitions of n.
25
0, 1, 1, 3, 3, 8, 8, 17, 20, 34, 41, 68, 80, 123, 153, 219, 271, 382, 469, 642, 795, 1055, 1305, 1713, 2102, 2713, 3336, 4241, 5190, 6545, 7968, 9950, 12090, 14953, 18104, 22255, 26821, 32752, 39371, 47774, 57220, 69104
OFFSET
1,4
COMMENTS
Also first differences of A096541. For more information see A135010.
LINKS
FORMULA
a(n) = A096541(n)-A096541(n-1) = A138137(n)-A000041(n-1) = A006128(n)-A006128(n-1)-A000041(n-1).
a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma - 2 + log(6*n/Pi^2))/(8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 24 2016
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k) / Product_{j>=2} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
MAPLE
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+`if`(i>1, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]-b(n-1, n-1)[2]:
seq (a(n), n=1..60); # Alois P. Heinz, Apr 04 2012
MATHEMATICA
a[n_] := DivisorSigma[0, n] - 1 + Sum[(DivisorSigma[0, k] - 1)*(PartitionsP[n - k] - PartitionsP[n - k - 1]), {k, 1, n - 1}]; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 14 2013, from 1st formula *)
Table[Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 42}] (* Robert Price, May 01 2020 *)
PROG
(PARI) a(n)=numdiv(n)-1+sum(k=1, n-1, (numdiv(k)-1)*(numbpart(n-k) - numbpart(n-k-1))) \\ Charles R Greathouse IV, Jan 14 2013
CROSSREFS
Zero together with the column k=2 of A207031.
Sequence in context: A205977 A363725 A238623 * A113166 A126872 A336102
KEYWORD
nonn
AUTHOR
Omar E. Pol, Mar 30 2008
STATUS
approved