login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238623
Number of partitions of n such that neither floor(n/2) nor ceiling(n/2) is a part.
3
0, 1, 1, 3, 3, 8, 8, 17, 19, 35, 39, 66, 76, 120, 140, 209, 246, 355, 419, 585, 695, 946, 1123, 1498, 1781, 2335, 2775, 3583, 4255, 5428, 6436, 8118, 9616, 12013, 14202, 17592, 20763, 25525, 30069, 36711, 43165, 52382, 61468, 74173, 86878, 104303, 121925
OFFSET
1,4
FORMULA
a(n) + A238622(n) = A000041(n).
EXAMPLE
a(7) counts these 8 partitions: 7, 61, 52, 511, 2221, 22111, 211111, 1111111.
MATHEMATICA
z=40; g[n_] := g[n] = IntegerPartitions[n];
t1 = Table[Count[g[n], p_ /; Or[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}] (* A238622 [or] *)
t2 = Table[Count[g[n], p_ /; Nor[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}] (* A238623 [nor] *)
t3 = Table[Count[g[n], p_ /; Xnor[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}] (* A238624 [xnor] *)
CROSSREFS
Sequence in context: A058617 A205977 A363725 * A138135 A113166 A126872
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 02 2014
STATUS
approved