login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205977
McKay-Thompson series of class 30F for the Monster group with a(0) = 1.
3
1, 1, 3, 3, 8, 8, 16, 17, 33, 35, 59, 65, 105, 116, 175, 198, 292, 330, 466, 533, 736, 842, 1132, 1304, 1725, 1985, 2576, 2974, 3809, 4394, 5555, 6415, 8030, 9261, 11475, 13234, 16264, 18734, 22843, 26296, 31849, 36613, 44058, 50602, 60551, 69452, 82669
OFFSET
-1,3
LINKS
FORMULA
Expansion of eta(q^3) * eta(q^5) * eta(q^6) * eta(q^10) / (eta(q) * eta(q^2) * eta(q^15) * eta(q^30)) in powers of q.
Euler transform of period 30 sequence [ 1, 2, 0, 2, 0, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 2, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A058617(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
1/q + 1 + 3*q + 3*q^2 + 8*q^3 + 8*q^4 + 16*q^5 + 17*q^6 + 33*q^7 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1-x^(3*k)) * (1-x^(5*k)) * (1-x^(6*k)) * (1-x^(10*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(15*k)) * (1-x^(30*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= eta[q^3]*eta[q^5]*eta[q^6]* eta[q^10]/(eta[q]*eta[q^2]*eta[q^15]*eta[q^30]); a:= CoefficientList[ Series[q*A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 17 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^15 + A) * eta(x^30 + A)), n))}
CROSSREFS
Cf. A058617.
Sequence in context: A168283 A135291 A058617 * A363725 A238623 A138135
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 02 2012
STATUS
approved