Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jun 17 2018 22:06:12
%S 1,1,3,3,8,8,16,17,33,35,59,65,105,116,175,198,292,330,466,533,736,
%T 842,1132,1304,1725,1985,2576,2974,3809,4394,5555,6415,8030,9261,
%U 11475,13234,16264,18734,22843,26296,31849,36613,44058,50602,60551,69452,82669
%N McKay-Thompson series of class 30F for the Monster group with a(0) = 1.
%H G. C. Greubel, <a href="/A205977/b205977.txt">Table of n, a(n) for n = -1..1000</a>
%F Expansion of eta(q^3) * eta(q^5) * eta(q^6) * eta(q^10) / (eta(q) * eta(q^2) * eta(q^15) * eta(q^30)) in powers of q.
%F Euler transform of period 30 sequence [ 1, 2, 0, 2, 0, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 2, 1, 0, ...].
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = f(t) where q = exp(2 Pi i t).
%F a(n) = A058617(n) unless n=0.
%F a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 13 2015
%e 1/q + 1 + 3*q + 3*q^2 + 8*q^3 + 8*q^4 + 16*q^5 + 17*q^6 + 33*q^7 + ...
%t nmax=60; CoefficientList[Series[Product[(1-x^(3*k)) * (1-x^(5*k)) * (1-x^(6*k)) * (1-x^(10*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(15*k)) * (1-x^(30*k))),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 13 2015 *)
%t eta[q_]:= q^(1/24)*QPochhammer[q]; A:= eta[q^3]*eta[q^5]*eta[q^6]* eta[q^10]/(eta[q]*eta[q^2]*eta[q^15]*eta[q^30]); a:= CoefficientList[ Series[q*A, {q,0,60}], q]; Table[a[[n]], {n,1,50}] (* _G. C. Greubel_, Jun 17 2018 *)
%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^15 + A) * eta(x^30 + A)), n))}
%Y Cf. A058617.
%K nonn
%O -1,3
%A _Michael Somos_, Feb 02 2012