login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058617
McKay-Thompson series of class 30F for Monster.
2
1, 0, 3, 3, 8, 8, 16, 17, 33, 35, 59, 65, 105, 116, 175, 198, 292, 330, 466, 533, 736, 842, 1132, 1304, 1725, 1985, 2576, 2974, 3809, 4394, 5555, 6415, 8030, 9261, 11475, 13234, 16264, 18734, 22843, 26296, 31849, 36613, 44058, 50602, 60551, 69452, 82669
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of -1 + ((eta(q^3)*eta(q^5)*eta(q^6)*eta(q^10))/(eta(q)* eta(q^2)*eta(q^15)*eta(q^30))) in powers of q. - G. C. Greubel, Jun 18 2018
EXAMPLE
T30F = 1/q + 3*q + 3*q^2 + 8*q^3 + 8*q^4 + 16*q^5 + 17*q^6 + 33*q^7 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[-x + Product[(1 - x^(3*k))*(1 - x^(5*k))*(1 - x^(6*k))*(1 - x^(10*k))/((1 - x^k)*(1 - x^(2*k))*(1 - x^(15*k))*(1 - x^(30*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2017 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= ((eta[q^3]*eta[q^5]*eta[q^6] *eta[q^10])/(eta[q]*eta[q^2]*eta[q^15]*eta[q^30])); a:= CoefficientList[Series[-1 + A, {q, 0, 60}], q]; Table[A058617[n], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
PROG
(PARI) q='q+O('q^50); A = -1 + ((eta(q^3)*eta(q^5)*eta(q^6)*eta(q^10))/( eta(q)*eta(q^2)*eta(q^15)*eta(q^30)))/q; Vec(A) \\ G. C. Greubel, Jun 18 2018
CROSSREFS
Cf. A205977 (same sequence except for n=0).
Sequence in context: A204136 A168283 A135291 * A205977 A363725 A238623
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved