login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058618
McKay-Thompson series of class 30G for the Monster group.
6
1, 0, 1, -1, 2, -2, 2, -3, 5, -5, 5, -7, 9, -10, 11, -14, 18, -20, 22, -27, 32, -36, 40, -48, 57, -63, 70, -82, 95, -106, 119, -137, 158, -175, 195, -222, 252, -280, 311, -352, 397, -439, 486, -546, 611, -676, 747, -834, 929, -1024, 1128, -1253, 1389, -1528
OFFSET
-1,5
REFERENCES
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Euler transform of period 30 sequence [ 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, -1, 1, 0, 0, ...]. - Michael Somos, Apr 06 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A094023.
G.f.: (x * Product_{k>0} (1 + x^k) * (1 + x^(15*k)) * P(15, x^k))^(-1) where P(n, x) is the n-th cyclotomic polynomial.
Convolution inverse of A094022. a(2*n) = -A123630(n).
a(2*n) = -A094023(n) if n>0. - Michael Somos, Aug 26 2015
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
T30G = 1/q + q - q^2 + 2*q^3 - 2*q^4 + 2*q^5 - 3*q^6 + 5*q^7 - 5*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q QPochhammer[ q^3] QPochhammer[ q^5] / (QPochhammer[ q^2] QPochhammer[ q^30]), {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^5 + A) / (eta(x^2 + A) * eta(x^30 + A)), n))}; /* Michael Somos, Apr 06 2012 */
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved