login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205974 a(n) = Fibonacci(n)*A033719(n) for n>=1, with a(0)=1, where A033719 lists the coefficients in theta_3(q)*theta_3(q^7). 4
1, 2, 0, 0, 6, 0, 0, 26, 84, 68, 0, 356, 0, 0, 0, 0, 5922, 0, 0, 0, 0, 0, 0, 114628, 0, 150050, 0, 0, 635622, 2056916, 0, 0, 17426472, 0, 0, 0, 29860704, 96631268, 0, 0, 0, 0, 0, 1733977748, 2805634932, 0, 0, 0, 0, 15557484098, 0, 0, 0, 213265164692, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare g.f. to the Lambert series of A033719:

1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-(-x)^n).

LINKS

Table of n, a(n) for n=0..55.

FORMULA

G.f.: 1 + 2*Sum_{n>=1} Fibonacci(n)*Kronecker(n,7)*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

EXAMPLE

G.f.: A(x) = 1 + 2*x + 6*x^4 + 26*x^7 + 84*x^8 + 68*x^9 + 356*x^11 +...

where A(x) = 1 + 1*2*x + 3*2*x^4 + 13*2*x^7 + 21*4*x^8 + 34*2*x^9 + 89*4*x^11 + 987*6*x^16 + 28657*4*x^23 +...+ Fibonacci(n)*A033719(n)*x^n +...

The g.f. is also given by the identity:

A(x) = 1 + 2*( 1*x/(1+x-x^2) + 1*x^2/(1-3*x^2+x^4) - 2*x^3/(1+4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) - 5*x^5/(1+11*x^5-x^10) - 8*x^6/(1-18*x^6+x^12) + 0*13*x^7/(1+29*x^7-x^14) +...).

The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].

PROG

(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

{a(n)=polcoeff(1 + 2*sum(m=1, n, fibonacci(m)*kronecker(m, 7)*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}

for(n=0, 40, print1(a(n), ", "))

CROSSREFS

Cf. A033719, A205973, A205975, A203847, A000204 (Lucas).

Cf. A209454 (Pell variant).

Sequence in context: A094785 A265856 A035536 * A098643 A193474 A241020

Adjacent sequences:  A205971 A205972 A205973 * A205975 A205976 A205977

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 02:20 EST 2019. Contains 329243 sequences. (Running on oeis4.)